Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import google.generativeai as genai
|
4 |
+
from typing import List, Tuple
|
5 |
+
import fitz # PyMuPDF
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
import numpy as np
|
8 |
+
import faiss
|
9 |
+
|
10 |
+
# Initialize Google API Key
|
11 |
+
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
|
12 |
+
genai.configure(api_key=GOOGLE_API_KEY)
|
13 |
+
|
14 |
+
# Placeholder for the app's state
|
15 |
+
class MyApp:
|
16 |
+
def __init__(self) -> None:
|
17 |
+
self.documents = []
|
18 |
+
self.embeddings = None
|
19 |
+
self.index = None
|
20 |
+
self.load_pdf("THEDIA1.pdf")
|
21 |
+
self.build_vector_db()
|
22 |
+
|
23 |
+
def load_pdf(self, file_path: str) -> None:
|
24 |
+
"""Extracts text from a PDF file and stores it in the app's documents."""
|
25 |
+
doc = fitz.open(file_path)
|
26 |
+
self.documents = []
|
27 |
+
for page_num in range(len(doc)):
|
28 |
+
page = doc[page_num]
|
29 |
+
text = page.get_text()
|
30 |
+
self.documents.append({"page": page_num + 1, "content": text})
|
31 |
+
print("PDF processed successfully!")
|
32 |
+
|
33 |
+
def build_vector_db(self) -> None:
|
34 |
+
"""Builds a vector database using FAISS and SentenceTransformer embeddings."""
|
35 |
+
model = SentenceTransformer("all-MiniLM-L6-v2")
|
36 |
+
embeddings = model.encode([doc["content"] for doc in self.documents])
|
37 |
+
self.embeddings = np.array(embeddings, dtype="float32")
|
38 |
+
self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
|
39 |
+
self.index.add(self.embeddings)
|
40 |
+
print("Vector database built successfully!")
|
41 |
+
|
42 |
+
def search(self, query: str, top_k: int = 5) -> List[Tuple[int, str]]:
|
43 |
+
"""Searches for the most similar documents based on the query."""
|
44 |
+
query_embedding = SentenceTransformer("all-MiniLM-L6-v2").encode([query])
|
45 |
+
distances, indices = self.index.search(np.array(query_embedding, dtype="float32"), top_k)
|
46 |
+
return [(self.documents[idx]["page"], self.documents[idx]["content"]) for idx in indices[0]]
|
47 |
+
|
48 |
+
def generate_response(self, query: str) -> str:
|
49 |
+
"""Generates a response using the Gemini model based on the query."""
|
50 |
+
if not GOOGLE_API_KEY:
|
51 |
+
raise ValueError("GOOGLE_API_KEY is not set. Please set it up.")
|
52 |
+
|
53 |
+
generation_config = genai.types.GenerationConfig(
|
54 |
+
temperature=0.7,
|
55 |
+
max_output_tokens=512
|
56 |
+
)
|
57 |
+
|
58 |
+
model_name = "gemini-1.5-pro-latest"
|
59 |
+
model = genai.GenerativeModel(model_name)
|
60 |
+
response = model.generate_content([query], generation_config=generation_config)
|
61 |
+
|
62 |
+
return response[0].text if response else "No response generated."
|
63 |
+
|
64 |
+
# Gradio UI setup for interaction
|
65 |
+
def main():
|
66 |
+
app = MyApp()
|
67 |
+
|
68 |
+
def handle_query(query):
|
69 |
+
search_results = app.search(query)
|
70 |
+
response = app.generate_response(query)
|
71 |
+
return {"Search Results": search_results, "Response": response}
|
72 |
+
|
73 |
+
gr.Interface(
|
74 |
+
fn=handle_query,
|
75 |
+
inputs=gr.Textbox(placeholder="Enter your query here"),
|
76 |
+
outputs=[
|
77 |
+
gr.JSON(label="Search Results"),
|
78 |
+
gr.Textbox(label="Generated Response")
|
79 |
+
],
|
80 |
+
title="Dialectical Behavioral Exercise with Gemini",
|
81 |
+
description="This app uses Google Gemini to generate responses based on document content."
|
82 |
+
).launch()
|
83 |
+
|
84 |
+
if __name__ == "__main__":
|
85 |
+
main()
|