RaghulDevaraj's picture
initial commit
b0370b6 verified
raw
history blame
6.83 kB
import gradio as gr
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
from groq import Groq
from langchain_groq import ChatGroq
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import JsonOutputParser, StrOutputParser
import os
from langchain_community.tools.tavily_search import TavilySearchResults
from typing_extensions import TypedDict
from typing import List
from langchain.schema import Document
from langgraph.graph import END, StateGraph
# Environment setup
os.environ['TAVILY_API_KEY'] = "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"
# Model and embedding setup
embed_model = FastEmbedEmbeddings(model_name="BAAI/bge-base-en-v1.5")
llm = ChatGroq(temperature=0, model_name="Llama3-8b-8192", api_key="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")
# Load documents from URLs
urls = ["https://lilianweng.github.io/posts/2023-06-23-agent/",
"https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/",
"https://lilianweng.github.io/posts/2023-10-25-adv-attack-llm/"]
docs = [WebBaseLoader(url).load() for url in urls]
docs_list = [item for sublist in docs for item in sublist]
# Document splitting
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=512, chunk_overlap=0)
doc_splits = text_splitter.split_documents(docs_list)
# Vectorstore setup
vectorstore = Chroma.from_documents(documents=doc_splits, embedding=embed_model, collection_name="local-rag")
retriever = vectorstore.as_retriever(search_kwargs={"k": 2})
# Prompt templates
question_router_prompt = PromptTemplate(
template="""<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are an expert at routing a
user question to a vectorstore or web search. Use the vectorstore for questions on LLM agents,
prompt engineering, and adversarial attacks. Otherwise, use web-search. Give a binary choice 'web_search'
or 'vectorstore' based on the question. Return a JSON with a single key 'datasource' and no preamble.
Question to route: {question} <|eot_id|><|start_header_id|>assistant<|end_header_id|>""",
input_variables=["question"],
)
question_router = question_router_prompt | llm | JsonOutputParser()
rag_chain_prompt = PromptTemplate(
template="""<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are an assistant for question-answering tasks.
Use the following pieces of retrieved context to answer the question concisely. <|eot_id|><|start_header_id|>user<|end_header_id|>
Question: {question}
Context: {context}
Answer: <|eot_id|><|start_header_id|>assistant<|end_header_id|>""",
input_variables=["question", "document"],
)
# Chain
rag_chain = rag_chain_prompt | llm | StrOutputParser()
# Web search tool
web_search_tool = TavilySearchResults(k=3)
# Workflow functions
def retrieve(state):
question = state["question"]
documents = retriever.invoke(question)
return {"documents": documents, "question": question}
def generate(state):
question = state["question"]
documents = state["documents"]
generation = rag_chain.invoke({"context": documents, "question": question})
return {"documents": documents, "question": question, "generation": generation}
def route_question(state):
question = state["question"]
source = question_router.invoke({"question": question})
return "websearch" if source['datasource'] == 'web_search' else "vectorstore"
def web_search(state):
question = state["question"]
docs = web_search_tool.invoke({"query": question})
web_results = Document(page_content="\n".join([d["content"] for d in docs]))
documents = state.get("documents", [])
documents.append(web_results)
return {"documents": documents, "question": question}
workflow = StateGraph(TypedDict("GraphState", {"question": str, "generation": str, "documents": List[Document]}))
# Define the nodes
workflow.add_node("websearch", web_search)
workflow.add_node("retrieve", retrieve)
workflow.add_node("generate", generate)
workflow.set_conditional_entry_point(
route_question,
{
"websearch": "websearch",
"vectorstore": "retrieve",
},
)
workflow.add_edge("retrieve", "generate")
workflow.add_edge("websearch", "generate")
# Compile the app
app = workflow.compile()
# Gradio integration with Chatbot
# Updated ask_question_conversation function
def ask_question_conversation(history, question):
inputs = {"question": question}
generation_result = None
# Run the workflow and get the generation result
for output in app.stream(inputs):
for key, value in output.items():
generation_result = value.get("generation", "No generation found")
# Append the new question and response to the history
history.append((question, generation_result))
# Return the updated history to chatbot and clear the question textbox
return history, ""
# Gradio conversation UI
'''
with gr.Blocks() as demo:
gr.Markdown("🤖 Multi-Agent Knowledge Assistant: Powered by RAG for Smart Answers!")
chatbot = gr.Chatbot(label="Chat with AI Assistant")
question = gr.Textbox(label="Your Question", placeholder="Ask your question here...")
clear = gr.Button("Clear Conversation")
# Submit action for the question textbox
question.submit(ask_question_conversation, [chatbot, question], [chatbot, question])
clear.click(lambda: [], None, chatbot) # Clear conversation history
demo.launch()
'''
with gr.Blocks(css="""
#title {
font-size: 26px;
font-weight: bold;
text-align: center;
color: #4A90E2;
}
#subtitle {
font-size: 18px;
text-align: center;
margin-top: -15px;
color: #7D7D7D;
}
.gr-chatbot, .gr-textbox, .gr-button {
max-width: 600px;
margin: 0 auto;
}
.gr-chatbot {
height: 400px;
}
.gr-button {
display: block;
width: 100px;
margin: 20px auto;
background-color: #4A90E2;
color: white;
}
""") as demo:
gr.Markdown("<div id='title'>🤖 Multi-Agent Knowledge Assistant: Powered by RAG for Smart Answers!</div>")
chatbot = gr.Chatbot(label="Chat with AI Assistant")
question = gr.Textbox(label="Ask a Question", placeholder="Type your question here...", lines=1)
clear = gr.Button("Clear Chat")
# Submit action for the question textbox
question.submit(ask_question_conversation, [chatbot, question], [chatbot, question])
clear.click(lambda: [], None, chatbot) # Clear conversation history
demo.launch()