Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,21 +5,37 @@ import torchvision
|
|
5 |
from PIL import Image
|
6 |
import gradio as gr
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
-
|
9 |
-
|
10 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
11 |
-
|
12 |
-
transform = torchvision.transforms.Compose([
|
13 |
-
torchvision.transforms.Resize((224, 224)),
|
14 |
-
torchvision.transforms.ToTensor(),
|
15 |
-
torchvision.transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.225, 0.225, 0.225])
|
16 |
-
])
|
17 |
|
18 |
REPO_ID = "Raaniel/model-smoke"
|
19 |
MODEL_FILE_NAME = "model_smoke.pt"
|
|
|
|
|
|
|
|
|
20 |
checkpoint_path = hf_hub_download(repo_id=REPO_ID, filename=MODEL_FILE_NAME)
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
model = model.to(device)
|
24 |
|
25 |
classes = ["chmury", 'inne', "dym"]
|
|
|
5 |
from PIL import Image
|
6 |
import gradio as gr
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
+
import torch.nn as nn
|
9 |
+
import timm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
REPO_ID = "Raaniel/model-smoke"
|
12 |
MODEL_FILE_NAME = "model_smoke.pt"
|
13 |
+
USE_CUDA = torch.cuda.is_available()
|
14 |
+
num_classes = 3
|
15 |
+
|
16 |
+
# Download the model
|
17 |
checkpoint_path = hf_hub_download(repo_id=REPO_ID, filename=MODEL_FILE_NAME)
|
18 |
|
19 |
+
# Load the checkpoint
|
20 |
+
state = torch.load(checkpoint_path, map_location=torch.device('cuda' if USE_CUDA else 'cpu'))
|
21 |
+
|
22 |
+
# Create the model and modify it
|
23 |
+
model = timm.create_model('mobilenetv3_small_050', pretrained=True)
|
24 |
+
num_features = model.classifier.in_features
|
25 |
+
|
26 |
+
# Additional linear and dropout layers
|
27 |
+
model.classifier = nn.Sequential(
|
28 |
+
nn.Linear(num_features, 256), # Additional linear layer
|
29 |
+
nn.ReLU(inplace=True),
|
30 |
+
nn.Dropout(0.5),
|
31 |
+
nn.Linear(256, num_classes) # Final classification layer
|
32 |
+
)
|
33 |
+
|
34 |
+
# Load the model weights
|
35 |
+
model.load_state_dict(state['weights'])
|
36 |
+
|
37 |
+
# Move model to the appropriate device
|
38 |
+
device = torch.device('cuda' if USE_CUDA else 'cpu')
|
39 |
model = model.to(device)
|
40 |
|
41 |
classes = ["chmury", 'inne', "dym"]
|