diff --git "a/Matching Exploration.ipynb" "b/Matching Exploration.ipynb" --- "a/Matching Exploration.ipynb" +++ "b/Matching Exploration.ipynb" @@ -28,39 +28,57 @@ "output_type": "stream", "text": [ "DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): api.ipify.org:443\n", - "DEBUG:urllib3.connectionpool:https://api.ipify.org:443 \"GET / HTTP/1.1\" 200 14\n", - "DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): api.gradio.app:443\n", - "DEBUG:urllib3.connectionpool:https://api.gradio.app:443 \"POST /gradio-initiated-analytics/ HTTP/1.1\" 200 31\n", "DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): api.gradio.app:443\n", "DEBUG:urllib3.connectionpool:https://api.gradio.app:443 \"POST /gradio-initiated-analytics/ HTTP/1.1\" 200 31\n", "DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): api.gradio.app:443\n", "DEBUG:urllib3.connectionpool:https://api.gradio.app:443 \"GET /pkg-version HTTP/1.1\" 200 20\n", - "DEBUG:asyncio:Using selector: KqueueSelector\n", - "DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): api.ipify.org:443\n" + "DEBUG:asyncio:Using selector: KqueueSelector\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Using cache from '/Users/ijanssen/videomatch/gradio_cached_examples/15' directory. If method or examples have changed since last caching, delete this folder to clear cache.\n" + "Caching examples at: '/Users/pshouche/videomatch/videomatch/gradio_cached_examples/13/log.csv'\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ + "INFO:root:Downloaded video from https://www.dropbox.com/s/8c89a9aba0w8gjg/Ploumen.mp4?dl=1 to /var/folders/w6/9kh8n81x3z9097k63m9r40h40000gp/T/75ae859c16eff3f4d876a8aa4a06533c.\n", + "WARNING:py.warnings:/Users/pshouche/opt/anaconda3/lib/python3.9/site-packages/moviepy/video/io/ffmpeg_reader.py:123: UserWarning: Warning: in file /var/folders/w6/9kh8n81x3z9097k63m9r40h40000gp/T/75ae859c16eff3f4d876a8aa4a06533c, 2764800 bytes wanted but 0 bytes read,at frame 750/3751, at time 150.00/150.03 sec. Using the last valid frame instead.\n", + " warnings.warn(\"Warning: in file %s, \"%(self.filename)+\n", + "\n", + "INFO:root:Computed hashes for (751, 32) frames.\n", + "INFO:root:Indexed hashes for 751 frames to /var/folders/w6/9kh8n81x3z9097k63m9r40h40000gp/T/75ae859c16eff3f4d876a8aa4a06533c.index.\n", + "INFO:root:Downloaded video from https://www.dropbox.com/s/rzmicviu1fe740t/Bram%20van%20Ojik%20krijgt%20reprimande.mp4?dl=1 to /var/folders/w6/9kh8n81x3z9097k63m9r40h40000gp/T/e295c0e13c21aa3e971921627e8c8b1a.\n", + "WARNING:py.warnings:/Users/pshouche/opt/anaconda3/lib/python3.9/site-packages/moviepy/video/io/ffmpeg_reader.py:123: UserWarning: Warning: in file /var/folders/w6/9kh8n81x3z9097k63m9r40h40000gp/T/e295c0e13c21aa3e971921627e8c8b1a, 2764800 bytes wanted but 0 bytes read,at frame 181/907, at time 36.20/36.24 sec. Using the last valid frame instead.\n", + " warnings.warn(\"Warning: in file %s, \"%(self.filename)+\n", + "\n", + "INFO:root:Computed hashes for (182, 32) frames.\n", + "WARNING clustering 182 points to 16 centroids: please provide at least 624 training points\n", + "INFO:root:Indexed hashes for 182 frames to /var/folders/w6/9kh8n81x3z9097k63m9r40h40000gp/T/e295c0e13c21aa3e971921627e8c8b1a.index.\n", + "INFO:root:Downloaded video from https://www.dropbox.com/s/wcot34ldmb84071/Baudet%20ontmaskert%20Omtzigt_%20u%20bent%20door%20de%20mand%20gevallen%21.mp4?dl=1 to /var/folders/w6/9kh8n81x3z9097k63m9r40h40000gp/T/a9eba3d8ca5fcfa4797dcf7fd294a682.\n", + "WARNING:py.warnings:/Users/pshouche/opt/anaconda3/lib/python3.9/site-packages/moviepy/video/io/ffmpeg_reader.py:123: UserWarning: Warning: in file /var/folders/w6/9kh8n81x3z9097k63m9r40h40000gp/T/a9eba3d8ca5fcfa4797dcf7fd294a682, 2764800 bytes wanted but 0 bytes read,at frame 1684/8573, at time 336.80/336.85 sec. Using the last valid frame instead.\n", + " warnings.warn(\"Warning: in file %s, \"%(self.filename)+\n", + "\n", + "INFO:root:Computed hashes for (1685, 32) frames.\n", + "INFO:root:Indexed hashes for 1685 frames to /var/folders/w6/9kh8n81x3z9097k63m9r40h40000gp/T/a9eba3d8ca5fcfa4797dcf7fd294a682.index.\n", + "INFO:root:Downloaded video from https://www.dropbox.com/s/4ognq8lshcujk43/Plenaire_zaal_20200923132426_Omtzigt.mp4?dl=1 to /var/folders/w6/9kh8n81x3z9097k63m9r40h40000gp/T/95fc56d68e602bc591942581d1c98114.\n", + "WARNING:py.warnings:/Users/pshouche/opt/anaconda3/lib/python3.9/site-packages/moviepy/video/io/ffmpeg_reader.py:123: UserWarning: Warning: in file /var/folders/w6/9kh8n81x3z9097k63m9r40h40000gp/T/95fc56d68e602bc591942581d1c98114, 2764800 bytes wanted but 0 bytes read,at frame 7470/37353, at time 1494.00/1494.11 sec. Using the last valid frame instead.\n", + " warnings.warn(\"Warning: in file %s, \"%(self.filename)+\n", + "\n", + "INFO:root:Computed hashes for (7471, 32) frames.\n", + "INFO:root:Indexed hashes for 7471 frames to /var/folders/w6/9kh8n81x3z9097k63m9r40h40000gp/T/95fc56d68e602bc591942581d1c98114.index.\n", + "DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): api.ipify.org:443\n", "DEBUG:urllib3.connectionpool:https://api.ipify.org:443 \"GET / HTTP/1.1\" 200 14\n", "DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): api.gradio.app:443\n", "DEBUG:urllib3.connectionpool:https://api.gradio.app:443 \"POST /gradio-initiated-analytics/ HTTP/1.1\" 200 31\n", "DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): api.gradio.app:443\n", - "DEBUG:urllib3.connectionpool:https://api.gradio.app:443 \"POST /gradio-initiated-analytics/ HTTP/1.1\" 200 31\n", - "DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): api.gradio.app:443\n", "DEBUG:urllib3.connectionpool:https://api.gradio.app:443 \"GET /pkg-version HTTP/1.1\" 200 20\n", "DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): api.ipify.org:443\n", - "DEBUG:urllib3.connectionpool:https://api.ipify.org:443 \"GET / HTTP/1.1\" 200 14\n", - "DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): api.gradio.app:443\n", - "DEBUG:urllib3.connectionpool:https://api.gradio.app:443 \"POST /gradio-initiated-analytics/ HTTP/1.1\" 200 31\n" + "DEBUG:urllib3.connectionpool:https://api.ipify.org:443 \"GET / HTTP/1.1\" 200 14\n" ] } ], @@ -70,1251 +88,32 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "INFO:root:Skipping downloading from https://www.dropbox.com/s/8c89a9aba0w8gjg/Ploumen.mp4?dl=1 because /var/folders/hy/qkxzx5jj0hvcj_l_lpvn81sc0000gp/T/75ae859c16eff3f4d876a8aa4a06533c already exists.\n", - "INFO:root:Loading indexed hashes from /var/folders/hy/qkxzx5jj0hvcj_l_lpvn81sc0000gp/T/75ae859c16eff3f4d876a8aa4a06533c.index\n", - "INFO:root:Index /var/folders/hy/qkxzx5jj0hvcj_l_lpvn81sc0000gp/T/75ae859c16eff3f4d876a8aa4a06533c.index has in total 751 frames\n", - "INFO:root:Skipping downloading from https://www.dropbox.com/s/4ognq8lshcujk43/Plenaire_zaal_20200923132426_Omtzigt.mp4?dl=1 because /var/folders/hy/qkxzx5jj0hvcj_l_lpvn81sc0000gp/T/95fc56d68e602bc591942581d1c98114 already exists.\n", - "INFO:root:Loading indexed hashes from /var/folders/hy/qkxzx5jj0hvcj_l_lpvn81sc0000gp/T/95fc56d68e602bc591942581d1c98114.index\n", - "INFO:root:Index /var/folders/hy/qkxzx5jj0hvcj_l_lpvn81sc0000gp/T/95fc56d68e602bc591942581d1c98114.index has in total 7471 frames\n", - "DEBUG:matplotlib.pyplot:Loaded backend module://matplotlib_inline.backend_inline version unknown.\n", - "DEBUG:matplotlib.pyplot:Loaded backend module://matplotlib_inline.backend_inline version unknown.\n", - "DEBUG:matplotlib.font_manager:findfont: Matching sans\\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0.\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 2.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 2.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansInscriptionalParthian-Regular.ttf', name='Noto Sans Inscriptional Parthian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXSizTwoSymReg.otf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansLisu-Regular.ttf', name='Noto Sans Lisu', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Chalkduster.ttf', name='Chalkduster', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXGeneralBolIta.otf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/AppleGothic.ttf', name='AppleGothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W4.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansNabataean-Regular.ttf', name='Noto Sans Nabataean', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansTaiViet-Regular.ttf', name='Noto Sans Tai Viet', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Trebuchet MS Italic.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Diwan Kufi.ttc', name='Diwan Kufi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Sathu.ttf', name='Sathu', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Noteworthy.ttc', name='Noteworthy', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXNonUniBolIta.otf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansUgaritic-Regular.ttf', name='Noto Sans Ugaritic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansBhaiksuki-Regular.ttf', name='Noto Sans Bhaiksuki', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOldPersian-Regular.ttf', name='Noto Sans Old Persian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansWarangCiti-Regular.ttf', name='Noto Sans Warang Citi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Tahoma Bold.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOlChiki-Regular.ttf', name='Noto Sans Ol Chiki', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Mishafi Gold.ttf', name='Mishafi Gold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/InaiMathi-MN.ttc', name='InaiMathi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/PartyLET-plain.ttf', name='Party LET', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-Regular.ttf', name='Roboto', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansNewa-Regular.ttf', name='Noto Sans Newa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Kohinoor.ttc', name='Kohinoor Devanagari', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansRejang-Regular.ttf', name='Noto Sans Rejang', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansSiddham-Regular.ttf', name='Noto Sans Siddham', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/ChalkboardSE.ttc', name='Chalkboard SE', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Bodoni 72 Smallcaps Book.ttf', name='Bodoni 72 Smallcaps', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansTirhuta-Regular.ttf', name='Noto Sans Tirhuta', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansImperialAramaic-Regular.ttf', name='Noto Sans Imperial Aramaic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Apple Braille Pinpoint 6 Dot.ttf', name='Apple Braille', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Gurmukhi.ttf', name='Gurmukhi MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansPhagsPa-Regular.ttf', name='Noto Sans PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansLinearB-Regular.ttf', name='Noto Sans Linear B', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Muna.ttc', name='Muna', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/LucidaGrande.ttc', name='Lucida Grande', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansPhoenician-Regular.ttf', name='Noto Sans Phoenician', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Times New Roman.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W2.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=250, stretch='normal', size='scalable')) = 10.1925\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/KufiStandardGK.ttc', name='KufiStandardGK', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansLepcha-Regular.ttf', name='Noto Sans Lepcha', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansSoraSompeng-Regular.ttf', name='Noto Sans Sora Sompeng', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/AmericanTypewriter.ttc', name='American Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/PTSerif.ttc', name='PT Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOldNorthArabian-Regular.ttf', name='Noto Sans Old North Arabian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Farah.ttc', name='Farah', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Hoefler Text Ornaments.ttf', name='Hoefler Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Apple Symbols.ttf', name='Apple Symbols', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Thonburi.ttc', name='Thonburi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/SuperClarendon.ttc', name='Superclarendon', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W9.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Sinhala MN.ttc', name='Sinhala MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Kefa.ttc', name='Kefa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Courier.ttc', name='Courier', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Bodoni 72.ttc', name='Bodoni 72', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Bangla Sangam MN.ttc', name='Bangla Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Apple Braille.ttf', name='Apple Braille', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Rounded Bold.ttf', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Baskerville.ttc', name='Baskerville', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-BoldItalic.ttf', name='Roboto', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/SFNSMono.ttf', name='.SF NS Mono', style='normal', variant='normal', weight=295, stretch='normal', size='scalable')) = 10.14975\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W1.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=200, stretch='normal', size='scalable')) = 10.24\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Apple Braille Outline 8 Dot.ttf', name='Apple Braille', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansKaithi-Regular.ttf', name='Noto Sans Kaithi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMasaramGondi-Regular.otf', name='Noto Sans Masaram Gondi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Avenir Next Condensed.ttc', name='Avenir Next Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W5.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXSizOneSymReg.otf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Shree714.ttc', name='Shree Devanagari 714', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/DevanagariMT.ttc', name='Devanagari MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/DecoTypeNaskh.ttc', name='DecoType Naskh', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Mishafi.ttf', name='Mishafi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansLydian-Regular.ttf', name='Noto Sans Lydian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/AppleMyungjo.ttf', name='AppleMyungjo', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMongolian-Regular.ttf', name='Noto Sans Mongolian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntUpSmBol.otf', name='STIXIntegralsUpSm', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMiao-Regular.ttf', name='Noto Sans Miao', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntDReg.otf', name='STIXIntegralsD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Courier New Italic.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansAdlam-Regular.ttf', name='Noto Sans Adlam', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMeeteiMayek-Regular.ttf', name='Noto Sans Meetei Mayek', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Telugu MN.ttc', name='Telugu MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXGeneralBol.otf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansCuneiform-Regular.ttf', name='Noto Sans Cuneiform', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Sana.ttc', name='Sana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/AppleSDGothicNeo.ttc', name='Apple SD Gothic Neo', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-MediumItalic.ttf', name='Roboto', style='italic', variant='normal', weight=500, stretch='normal', size='scalable')) = 11.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Futura.ttc', name='Futura', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansBuginese-Regular.ttf', name='Noto Sans Buginese', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Trattatello.ttf', name='Trattatello', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansSundanese-Regular.ttf', name='Noto Sans Sundanese', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/NotoSansMyanmar.ttc', name='Noto Sans Myanmar', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Trebuchet MS Bold Italic.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ明朝 ProN.ttc', name='Hiragino Mincho ProN', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntDBol.otf', name='STIXIntegralsD', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/SFNS.ttf', name='System Font', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansInscriptionalPahlavi-Regular.ttf', name='Noto Sans Inscriptional Pahlavi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansPsalterPahlavi-Regular.ttf', name='Noto Sans Psalter Pahlavi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Avenir.ttc', name='Avenir', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansModi-Regular.ttf', name='Noto Sans Modi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMandaic-Regular.ttf', name='Noto Sans Mandaic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Kannada MN.ttc', name='Kannada MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Verdana Italic.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Geneva.ttf', name='Geneva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/KohinoorBangla.ttc', name='Kohinoor Bangla', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Kannada Sangam MN.ttc', name='Kannada Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Hiragino Sans GB.ttc', name='Hiragino Sans GB', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Black.ttf', name='Arial Black', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Cochin.ttc', name='Cochin', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Marion.ttc', name='Marion', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Georgia Bold Italic.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Charter.ttc', name='Charter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Trebuchet MS Bold.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansHanifiRohingya-Regular.ttf', name='Noto Sans Hanifi Rohingya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansAvestan-Regular.ttf', name='Noto Sans Avestan', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansGlagolitic-Regular.ttf', name='Noto Sans Glagolitic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Rockwell.ttc', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/DIN Alternate Bold.ttf', name='DIN Alternate', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntSmReg.otf', name='STIXIntegralsSm', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/STHeiti Medium.ttc', name='Heiti TC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansCham-Regular.ttf', name='Noto Sans Cham', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansKhojki-Regular.ttf', name='Noto Sans Khojki', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/SFCompactRounded.ttf', name='.SF Compact Rounded', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Gujarati Sangam MN.ttc', name='Gujarati Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Trebuchet MS.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Kokonor.ttf', name='Kokonor', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Myanmar MN.ttc', name='Myanmar MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansCoptic-Regular.ttf', name='Noto Sans Coptic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ArialHB.ttc', name='Arial Hebrew', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansTaiTham-Regular.ttf', name='Noto Sans Tai Tham', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Verdana Bold.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOldHungarian-Regular.ttf', name='Noto Sans Old Hungarian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansBuhid-Regular.ttf', name='Noto Sans Buhid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/HelveticaNeue.ttc', name='Helvetica Neue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Courier New.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/NotoSansArmenian.ttc', name='Noto Sans Armenian', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansPahawhHmong-Regular.ttf', name='Noto Sans Pahawh Hmong', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/SFCompactItalic.ttf', name='.SF Compact', style='italic', variant='normal', weight=1000, stretch='normal', size='scalable')) = 11.62\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Monaco.ttf', name='Monaco', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Herculanum.ttf', name='Herculanum', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Damascus.ttc', name='Damascus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSerifAhom-Regular.ttf', name='Noto Serif Ahom', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntUpDBol.otf', name='STIXIntegralsUpD', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Al Tarikh.ttc', name='Al Tarikh', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansTakri-Regular.ttf', name='Noto Sans Takri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansTifinagh-Regular.ttf', name='Noto Sans Tifinagh', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/GeezaPro.ttc', name='Geeza Pro', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Khmer Sangam MN.ttf', name='Khmer Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMahajani-Regular.ttf', name='Noto Sans Mahajani', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansCypriot-Regular.ttf', name='Noto Sans Cypriot', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Nadeem.ttc', name='Nadeem', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Bodoni Ornaments.ttf', name='Bodoni Ornaments', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSerifYezidi-Regular.otf', name='Noto Serif Yezidi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansLinearA-Regular.ttf', name='Noto Sans Linear A', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Arial Unicode.ttf', name='Arial Unicode MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXVarBol.otf', name='STIXVariants', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Andale Mono.ttf', name='Andale Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/NewYork.ttf', name='.New York', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/EuclidFlexRTL.ttf', name='Euclid Flex RTL', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansPauCinHau-Regular.ttf', name='Noto Sans Pau Cin Hau', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Papyrus.ttc', name='Papyrus', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/SFArabic.ttf', name='.SF Arabic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansSylotiNagri-Regular.ttf', name='Noto Sans Syloti Nagri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Georgia Bold.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/NotoNastaliq.ttc', name='Noto Nastaliq Urdu', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Seravek.ttc', name='Seravek', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansBatak-Regular.ttf', name='Noto Sans Batak', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansGunjalaGondi-Regular.otf', name='Noto Sans Gunjala Gondi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntUpBol.otf', name='STIXIntegralsUp', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOldItalic-Regular.ttf', name='Noto Sans Old Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansSyriac-Regular.ttf', name='Noto Sans Syriac', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansVai-Regular.ttf', name='Noto Sans Vai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NewPeninimMT.ttc', name='New Peninim MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Ayuthaya.ttf', name='Ayuthaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/SignPainter.ttc', name='SignPainter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansEgyptianHieroglyphs-Regular.ttf', name='Noto Sans Egyptian Hieroglyphs', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntUpReg.otf', name='STIXIntegralsUp', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansElbasan-Regular.ttf', name='Noto Sans Elbasan', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMultani-Regular.ttf', name='Noto Sans Multani', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W0.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=100, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Palatino.ttc', name='Palatino', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W8.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Times New Roman Italic.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/SukhumvitSet.ttc', name='Sukhumvit Set', style='normal', variant='normal', weight=250, stretch='normal', size='scalable')) = 10.1925\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Verdana Bold Italic.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Devanagari Sangam MN.ttc', name='Devanagari Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Farisi.ttf', name='Farisi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-Bold.ttf', name='Roboto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansWancho-Regular.ttf', name='Noto Sans Wancho', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXSizThreeSymReg.otf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/KohinoorGujarati.ttc', name='Kohinoor Gujarati', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/EuclidFlexRTLMedium.ttf', name='Euclid Flex RTL Medium', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Corsiva.ttc', name='Corsiva Hebrew', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansSamaritan-Regular.ttf', name='Noto Sans Samaritan', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Luminari.ttf', name='Luminari', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/AquaKana.ttc', name='.Aqua Kana', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntSmBol.otf', name='STIXIntegralsSm', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansLimbu-Regular.ttf', name='Noto Sans Limbu', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Bodoni 72 OS.ttc', name='Bodoni 72 Oldstyle', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Galvji.ttc', name='Galvji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Apple Braille Outline 6 Dot.ttf', name='Apple Braille', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W6.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansHanunoo-Regular.ttf', name='Noto Sans Hanunoo', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansDuployan-Regular.ttf', name='Noto Sans Duployan', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOldPermic-Regular.ttf', name='Noto Sans Old Permic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/PTSans.ttc', name='PT Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMro-Regular.ttf', name='Noto Sans Mro', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Wingdings.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Gurmukhi MN.ttc', name='Gurmukhi MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXGeneral.otf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Chalkboard.ttc', name='Chalkboard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansTagbanwa-Regular.ttf', name='Noto Sans Tagbanwa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Tamil MN.ttc', name='Tamil MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Baghdad.ttc', name='Baghdad', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOldSouthArabian-Regular.ttf', name='Noto Sans Old South Arabian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/AlBayan.ttc', name='Al Bayan', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Comic Sans MS.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Optima.ttc', name='Optima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-ThinItalic.ttf', name='Roboto', style='italic', variant='normal', weight=250, stretch='normal', size='scalable')) = 11.1925\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Times New Roman Bold.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Bradley Hand Bold.ttf', name='Bradley Hand', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansSharada-Regular.ttf', name='Noto Sans Sharada', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ丸ゴ ProN W4.ttc', name='Hiragino Maru Gothic Pro', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansChakma-Regular.ttf', name='Noto Sans Chakma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Songti.ttc', name='Songti SC', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Comic Sans MS Bold.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOsmanya-Regular.ttf', name='Noto Sans Osmanya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W3.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Courier New Bold Italic.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansHatran-Regular.ttf', name='Noto Sans Hatran', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Malayalam MN.ttc', name='Malayalam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Unicode.ttf', name='Arial Unicode MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Oriya Sangam MN.ttc', name='Oriya Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/SFNSItalic.ttf', name='System Font', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Bold Italic.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Myanmar Sangam MN.ttc', name='Myanmar Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXSizThreeSymBol.otf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/SFNSRounded.ttf', name='.SF NS Rounded', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/MarkerFelt.ttc', name='Marker Felt', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansBrahmi-Regular.ttf', name='Noto Sans Brahmi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Narrow Bold.ttf', name='Arial Narrow', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-Medium.ttf', name='Roboto', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Lao Sangam MN.ttf', name='Lao Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Zapfino.ttf', name='Zapfino', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/DIN Condensed Bold.ttf', name='DIN Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-Black.ttf', name='Roboto', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Athelas.ttc', name='Athelas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Narrow Bold Italic.ttf', name='Arial Narrow', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Menlo.ttc', name='Menlo', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Gurmukhi Sangam MN.ttc', name='Gurmukhi Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansYi-Regular.ttf', name='Noto Sans Yi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/KohinoorTelugu.ttc', name='Kohinoor Telugu', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Krungthep.ttf', name='Krungthep', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansNKo-Regular.ttf', name='Noto Sans NKo', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-Light.ttf', name='Roboto', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Bangla MN.ttc', name='Bangla MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansPalmyrene-Regular.ttf', name='Noto Sans Palmyrene', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/BigCaslon.ttf', name='Big Caslon', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/SFNSMonoItalic.ttf', name='.SF NS Mono', style='italic', variant='normal', weight=295, stretch='normal', size='scalable')) = 11.14975\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMarchen-Regular.ttf', name='Noto Sans Marchen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Apple Chancery.ttf', name='Apple Chancery', style='normal', variant='normal', weight=0, stretch='normal', size='scalable')) = 10.43\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansKayahLi-Regular.ttf', name='Noto Sans Kayah Li', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Skia.ttf', name='Skia', style='normal', variant='normal', weight=5, stretch='normal', size='scalable')) = 10.42525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXNonUniBol.otf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Italic.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXNonUniIta.otf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Diwan Thuluth.ttf', name='Diwan Thuluth', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/GillSans.ttc', name='Gill Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Beirut.ttc', name='Beirut', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansCarian-Regular.ttf', name='Noto Sans Carian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOldTurkic-Regular.ttf', name='Noto Sans Old Turkic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Wingdings 2.ttf', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/SnellRoundhand.ttc', name='Snell Roundhand', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSerifBalinese-Regular.ttf', name='Noto Serif Balinese', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Telugu Sangam MN.ttc', name='Telugu Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-LightItalic.ttf', name='Roboto', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/ITFDevanagari.ttc', name='ITF Devanagari', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXSizFiveSymReg.otf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Times.ttc', name='Times', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXVar.otf', name='STIXVariants', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansLycian-Regular.ttf', name='Noto Sans Lycian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansThaana-Regular.ttf', name='Noto Sans Thaana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Al Nile.ttc', name='Al Nile', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-Italic.ttf', name='Roboto', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Academy Engraved LET Fonts.ttf', name='Academy Engraved LET', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Narrow.ttf', name='Arial Narrow', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansKhudawadi-Regular.ttf', name='Noto Sans Khudawadi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-Thin.ttf', name='Roboto', style='normal', variant='normal', weight=250, stretch='normal', size='scalable')) = 10.1925\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMendeKikakui-Regular.ttf', name='Noto Sans Mende Kikakui', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Copperplate.ttc', name='Copperplate', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/NotoSansKannada.ttc', name='Noto Sans Kannada', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXSizTwoSymBol.otf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXNonUni.otf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/PTSerifCaption.ttc', name='PT Serif Caption', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMeroitic-Regular.ttf', name='Noto Sans Meroitic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Tamil Sangam MN.ttc', name='Tamil Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Phosphate.ttc', name='Phosphate', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntUpDReg.otf', name='STIXIntegralsUpD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Raanana.ttc', name='Raanana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXSizOneSymBol.otf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Avenir Next.ttc', name='Avenir Next', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Hoefler Text.ttc', name='Hoefler Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/EuclidFlexRTLBold.ttf', name='Euclid Flex RTL Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Brush Script.ttf', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansManichaean-Regular.ttf', name='Noto Sans Manichaean', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Keyboard.ttf', name='.Keyboard', style='normal', variant='normal', weight=100, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/PingFang.ttc', name='PingFang HK', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansKharoshthi-Regular.ttf', name='Noto Sans Kharoshthi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Malayalam Sangam MN.ttc', name='Malayalam Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Microsoft Sans Serif.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansSaurashtra-Regular.ttf', name='Noto Sans Saurashtra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Oriya MN.ttc', name='Oriya MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Wingdings 3.ttf', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Georgia Italic.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/SFCompact.ttf', name='.SF Compact', style='normal', variant='normal', weight=1000, stretch='normal', size='scalable')) = 10.62\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansTagalog-Regular.ttf', name='Noto Sans Tagalog', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/EuphemiaCAS.ttc', name='Euphemia UCAS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/NotoSansOriya.ttc', name='Noto Sans Oriya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXSizFourSymBol.otf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Bold.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/STHeiti Light.ttc', name='Heiti TC', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Times New Roman Bold Italic.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/PlantagenetCherokee.ttf', name='Plantagenet Cherokee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansNewTaiLue-Regular.ttf', name='Noto Sans New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Lao MN.ttc', name='Lao MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-BlackItalic.ttf', name='Roboto', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Silom.ttf', name='Silom', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Waseem.ttc', name='Waseem', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Apple Braille Pinpoint 8 Dot.ttf', name='Apple Braille', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Sinhala Sangam MN.ttc', name='Sinhala Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Kailasa.ttc', name='Kailasa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W7.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXSizFourSymReg.otf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Iowan Old Style.ttc', name='Iowan Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansBassaVah-Regular.ttf', name='Noto Sans Bassa Vah', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/NotoSerifMyanmar.ttc', name='Noto Serif Myanmar', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOsage-Regular.ttf', name='Noto Sans Osage', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Didot.ttc', name='Didot', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansBamum-Regular.ttf', name='Noto Sans Bamum', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Mshtakan.ttc', name='Mshtakan', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ZapfDingbats.ttf', name='Zapf Dingbats', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/NewYorkItalic.ttf', name='.New York', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Courier New Bold.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Khmer MN.ttc', name='Khmer MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXGeneralItalic.otf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Savoye LET.ttc', name='Savoye LET', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Helvetica.ttc', name='Helvetica', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntUpSmReg.otf', name='STIXIntegralsUpSm', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/MuktaMahee.ttc', name='Mukta Mahee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/GujaratiMT.ttc', name='Gujarati MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/PTMono.ttc', name='PT Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Narrow Italic.ttf', name='Arial Narrow', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansGothic-Regular.ttf', name='Noto Sans Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansTaiLe-Regular.ttf', name='Noto Sans Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansJavanese-Regular.otf', name='Noto Sans Javanese', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansCaucasianAlbanian-Regular.ttf', name='Noto Sans Caucasian Albanian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: Matching sans\\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=10.0 to Arial ('/System/Library/Fonts/Supplemental/Arial.ttf') with score of 0.050000.\n", - "WARNING:py.warnings:/usr/local/lib/python3.9/site-packages/seaborn/relational.py:654: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n", + "INFO:root:Skipping downloading from https://www.dropbox.com/s/8c89a9aba0w8gjg/Ploumen.mp4?dl=1 because /var/folders/w6/9kh8n81x3z9097k63m9r40h40000gp/T/75ae859c16eff3f4d876a8aa4a06533c already exists.\n", + "INFO:root:Loading indexed hashes from /var/folders/w6/9kh8n81x3z9097k63m9r40h40000gp/T/75ae859c16eff3f4d876a8aa4a06533c.index\n", + "INFO:root:Index /var/folders/w6/9kh8n81x3z9097k63m9r40h40000gp/T/75ae859c16eff3f4d876a8aa4a06533c.index has in total 751 frames\n", + "INFO:root:Skipping downloading from https://www.dropbox.com/s/4ognq8lshcujk43/Plenaire_zaal_20200923132426_Omtzigt.mp4?dl=1 because /var/folders/w6/9kh8n81x3z9097k63m9r40h40000gp/T/95fc56d68e602bc591942581d1c98114 already exists.\n", + "INFO:root:Loading indexed hashes from /var/folders/w6/9kh8n81x3z9097k63m9r40h40000gp/T/95fc56d68e602bc591942581d1c98114.index\n", + "INFO:root:Index /var/folders/w6/9kh8n81x3z9097k63m9r40h40000gp/T/95fc56d68e602bc591942581d1c98114.index has in total 7471 frames\n", + "WARNING:py.warnings:/Users/pshouche/opt/anaconda3/lib/python3.9/site-packages/seaborn/relational.py:654: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n", " kws[\"alpha\"] = 1 if self.alpha == \"auto\" else self.alpha\n", - "\n", - "DEBUG:matplotlib.font_manager:findfont: Matching sans\\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=11.0.\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 2.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 2.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansInscriptionalParthian-Regular.ttf', name='Noto Sans Inscriptional Parthian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXSizTwoSymReg.otf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansLisu-Regular.ttf', name='Noto Sans Lisu', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Chalkduster.ttf', name='Chalkduster', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXGeneralBolIta.otf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/AppleGothic.ttf', name='AppleGothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W4.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansNabataean-Regular.ttf', name='Noto Sans Nabataean', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansTaiViet-Regular.ttf', name='Noto Sans Tai Viet', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Trebuchet MS Italic.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Diwan Kufi.ttc', name='Diwan Kufi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Sathu.ttf', name='Sathu', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Noteworthy.ttc', name='Noteworthy', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXNonUniBolIta.otf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansUgaritic-Regular.ttf', name='Noto Sans Ugaritic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansBhaiksuki-Regular.ttf', name='Noto Sans Bhaiksuki', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOldPersian-Regular.ttf', name='Noto Sans Old Persian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansWarangCiti-Regular.ttf', name='Noto Sans Warang Citi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Tahoma Bold.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOlChiki-Regular.ttf', name='Noto Sans Ol Chiki', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Mishafi Gold.ttf', name='Mishafi Gold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/InaiMathi-MN.ttc', name='InaiMathi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/PartyLET-plain.ttf', name='Party LET', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-Regular.ttf', name='Roboto', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansNewa-Regular.ttf', name='Noto Sans Newa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Kohinoor.ttc', name='Kohinoor Devanagari', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansRejang-Regular.ttf', name='Noto Sans Rejang', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansSiddham-Regular.ttf', name='Noto Sans Siddham', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/ChalkboardSE.ttc', name='Chalkboard SE', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Bodoni 72 Smallcaps Book.ttf', name='Bodoni 72 Smallcaps', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansTirhuta-Regular.ttf', name='Noto Sans Tirhuta', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansImperialAramaic-Regular.ttf', name='Noto Sans Imperial Aramaic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Apple Braille Pinpoint 6 Dot.ttf', name='Apple Braille', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Gurmukhi.ttf', name='Gurmukhi MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansPhagsPa-Regular.ttf', name='Noto Sans PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansLinearB-Regular.ttf', name='Noto Sans Linear B', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Muna.ttc', name='Muna', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/LucidaGrande.ttc', name='Lucida Grande', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansPhoenician-Regular.ttf', name='Noto Sans Phoenician', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Times New Roman.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W2.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=250, stretch='normal', size='scalable')) = 10.1925\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/KufiStandardGK.ttc', name='KufiStandardGK', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansLepcha-Regular.ttf', name='Noto Sans Lepcha', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansSoraSompeng-Regular.ttf', name='Noto Sans Sora Sompeng', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/AmericanTypewriter.ttc', name='American Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/PTSerif.ttc', name='PT Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOldNorthArabian-Regular.ttf', name='Noto Sans Old North Arabian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Farah.ttc', name='Farah', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Hoefler Text Ornaments.ttf', name='Hoefler Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Apple Symbols.ttf', name='Apple Symbols', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Thonburi.ttc', name='Thonburi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/SuperClarendon.ttc', name='Superclarendon', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W9.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Sinhala MN.ttc', name='Sinhala MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Kefa.ttc', name='Kefa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Courier.ttc', name='Courier', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Bodoni 72.ttc', name='Bodoni 72', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Bangla Sangam MN.ttc', name='Bangla Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Apple Braille.ttf', name='Apple Braille', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Rounded Bold.ttf', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Baskerville.ttc', name='Baskerville', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-BoldItalic.ttf', name='Roboto', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/SFNSMono.ttf', name='.SF NS Mono', style='normal', variant='normal', weight=295, stretch='normal', size='scalable')) = 10.14975\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W1.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=200, stretch='normal', size='scalable')) = 10.24\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Apple Braille Outline 8 Dot.ttf', name='Apple Braille', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansKaithi-Regular.ttf', name='Noto Sans Kaithi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMasaramGondi-Regular.otf', name='Noto Sans Masaram Gondi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Avenir Next Condensed.ttc', name='Avenir Next Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W5.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXSizOneSymReg.otf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Shree714.ttc', name='Shree Devanagari 714', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/DevanagariMT.ttc', name='Devanagari MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/DecoTypeNaskh.ttc', name='DecoType Naskh', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Mishafi.ttf', name='Mishafi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansLydian-Regular.ttf', name='Noto Sans Lydian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/AppleMyungjo.ttf', name='AppleMyungjo', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMongolian-Regular.ttf', name='Noto Sans Mongolian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntUpSmBol.otf', name='STIXIntegralsUpSm', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMiao-Regular.ttf', name='Noto Sans Miao', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntDReg.otf', name='STIXIntegralsD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Courier New Italic.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansAdlam-Regular.ttf', name='Noto Sans Adlam', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMeeteiMayek-Regular.ttf', name='Noto Sans Meetei Mayek', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Telugu MN.ttc', name='Telugu MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXGeneralBol.otf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansCuneiform-Regular.ttf', name='Noto Sans Cuneiform', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Sana.ttc', name='Sana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/AppleSDGothicNeo.ttc', name='Apple SD Gothic Neo', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-MediumItalic.ttf', name='Roboto', style='italic', variant='normal', weight=500, stretch='normal', size='scalable')) = 11.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Futura.ttc', name='Futura', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansBuginese-Regular.ttf', name='Noto Sans Buginese', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Trattatello.ttf', name='Trattatello', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansSundanese-Regular.ttf', name='Noto Sans Sundanese', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/NotoSansMyanmar.ttc', name='Noto Sans Myanmar', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Trebuchet MS Bold Italic.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ明朝 ProN.ttc', name='Hiragino Mincho ProN', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntDBol.otf', name='STIXIntegralsD', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/SFNS.ttf', name='System Font', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansInscriptionalPahlavi-Regular.ttf', name='Noto Sans Inscriptional Pahlavi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansPsalterPahlavi-Regular.ttf', name='Noto Sans Psalter Pahlavi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Avenir.ttc', name='Avenir', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansModi-Regular.ttf', name='Noto Sans Modi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMandaic-Regular.ttf', name='Noto Sans Mandaic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Kannada MN.ttc', name='Kannada MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Verdana Italic.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Geneva.ttf', name='Geneva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/KohinoorBangla.ttc', name='Kohinoor Bangla', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Kannada Sangam MN.ttc', name='Kannada Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Hiragino Sans GB.ttc', name='Hiragino Sans GB', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Black.ttf', name='Arial Black', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Cochin.ttc', name='Cochin', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Marion.ttc', name='Marion', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Georgia Bold Italic.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Charter.ttc', name='Charter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Trebuchet MS Bold.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansHanifiRohingya-Regular.ttf', name='Noto Sans Hanifi Rohingya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansAvestan-Regular.ttf', name='Noto Sans Avestan', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansGlagolitic-Regular.ttf', name='Noto Sans Glagolitic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Rockwell.ttc', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/DIN Alternate Bold.ttf', name='DIN Alternate', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntSmReg.otf', name='STIXIntegralsSm', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/STHeiti Medium.ttc', name='Heiti TC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansCham-Regular.ttf', name='Noto Sans Cham', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansKhojki-Regular.ttf', name='Noto Sans Khojki', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/SFCompactRounded.ttf', name='.SF Compact Rounded', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Gujarati Sangam MN.ttc', name='Gujarati Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Trebuchet MS.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Kokonor.ttf', name='Kokonor', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Myanmar MN.ttc', name='Myanmar MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansCoptic-Regular.ttf', name='Noto Sans Coptic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ArialHB.ttc', name='Arial Hebrew', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansTaiTham-Regular.ttf', name='Noto Sans Tai Tham', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Verdana Bold.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOldHungarian-Regular.ttf', name='Noto Sans Old Hungarian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansBuhid-Regular.ttf', name='Noto Sans Buhid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/HelveticaNeue.ttc', name='Helvetica Neue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Courier New.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/NotoSansArmenian.ttc', name='Noto Sans Armenian', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansPahawhHmong-Regular.ttf', name='Noto Sans Pahawh Hmong', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/SFCompactItalic.ttf', name='.SF Compact', style='italic', variant='normal', weight=1000, stretch='normal', size='scalable')) = 11.62\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Monaco.ttf', name='Monaco', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Herculanum.ttf', name='Herculanum', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Damascus.ttc', name='Damascus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSerifAhom-Regular.ttf', name='Noto Serif Ahom', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntUpDBol.otf', name='STIXIntegralsUpD', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Al Tarikh.ttc', name='Al Tarikh', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansTakri-Regular.ttf', name='Noto Sans Takri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansTifinagh-Regular.ttf', name='Noto Sans Tifinagh', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/GeezaPro.ttc', name='Geeza Pro', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Khmer Sangam MN.ttf', name='Khmer Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMahajani-Regular.ttf', name='Noto Sans Mahajani', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansCypriot-Regular.ttf', name='Noto Sans Cypriot', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Nadeem.ttc', name='Nadeem', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Bodoni Ornaments.ttf', name='Bodoni Ornaments', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSerifYezidi-Regular.otf', name='Noto Serif Yezidi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansLinearA-Regular.ttf', name='Noto Sans Linear A', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Arial Unicode.ttf', name='Arial Unicode MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXVarBol.otf', name='STIXVariants', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Andale Mono.ttf', name='Andale Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/NewYork.ttf', name='.New York', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/EuclidFlexRTL.ttf', name='Euclid Flex RTL', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansPauCinHau-Regular.ttf', name='Noto Sans Pau Cin Hau', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Papyrus.ttc', name='Papyrus', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/SFArabic.ttf', name='.SF Arabic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansSylotiNagri-Regular.ttf', name='Noto Sans Syloti Nagri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Georgia Bold.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/NotoNastaliq.ttc', name='Noto Nastaliq Urdu', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Seravek.ttc', name='Seravek', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansBatak-Regular.ttf', name='Noto Sans Batak', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansGunjalaGondi-Regular.otf', name='Noto Sans Gunjala Gondi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntUpBol.otf', name='STIXIntegralsUp', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOldItalic-Regular.ttf', name='Noto Sans Old Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansSyriac-Regular.ttf', name='Noto Sans Syriac', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansVai-Regular.ttf', name='Noto Sans Vai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NewPeninimMT.ttc', name='New Peninim MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Ayuthaya.ttf', name='Ayuthaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/SignPainter.ttc', name='SignPainter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansEgyptianHieroglyphs-Regular.ttf', name='Noto Sans Egyptian Hieroglyphs', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntUpReg.otf', name='STIXIntegralsUp', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansElbasan-Regular.ttf', name='Noto Sans Elbasan', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMultani-Regular.ttf', name='Noto Sans Multani', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W0.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=100, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Palatino.ttc', name='Palatino', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W8.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Times New Roman Italic.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/SukhumvitSet.ttc', name='Sukhumvit Set', style='normal', variant='normal', weight=250, stretch='normal', size='scalable')) = 10.1925\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Verdana Bold Italic.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Devanagari Sangam MN.ttc', name='Devanagari Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Farisi.ttf', name='Farisi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-Bold.ttf', name='Roboto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansWancho-Regular.ttf', name='Noto Sans Wancho', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXSizThreeSymReg.otf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/KohinoorGujarati.ttc', name='Kohinoor Gujarati', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/EuclidFlexRTLMedium.ttf', name='Euclid Flex RTL Medium', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Corsiva.ttc', name='Corsiva Hebrew', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansSamaritan-Regular.ttf', name='Noto Sans Samaritan', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Luminari.ttf', name='Luminari', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/AquaKana.ttc', name='.Aqua Kana', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntSmBol.otf', name='STIXIntegralsSm', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansLimbu-Regular.ttf', name='Noto Sans Limbu', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Bodoni 72 OS.ttc', name='Bodoni 72 Oldstyle', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Galvji.ttc', name='Galvji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Apple Braille Outline 6 Dot.ttf', name='Apple Braille', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W6.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansHanunoo-Regular.ttf', name='Noto Sans Hanunoo', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansDuployan-Regular.ttf', name='Noto Sans Duployan', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOldPermic-Regular.ttf', name='Noto Sans Old Permic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/PTSans.ttc', name='PT Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMro-Regular.ttf', name='Noto Sans Mro', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Wingdings.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Gurmukhi MN.ttc', name='Gurmukhi MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXGeneral.otf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Chalkboard.ttc', name='Chalkboard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansTagbanwa-Regular.ttf', name='Noto Sans Tagbanwa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Tamil MN.ttc', name='Tamil MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Baghdad.ttc', name='Baghdad', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOldSouthArabian-Regular.ttf', name='Noto Sans Old South Arabian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/AlBayan.ttc', name='Al Bayan', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Comic Sans MS.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Optima.ttc', name='Optima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-ThinItalic.ttf', name='Roboto', style='italic', variant='normal', weight=250, stretch='normal', size='scalable')) = 11.1925\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Times New Roman Bold.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Bradley Hand Bold.ttf', name='Bradley Hand', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansSharada-Regular.ttf', name='Noto Sans Sharada', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ丸ゴ ProN W4.ttc', name='Hiragino Maru Gothic Pro', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansChakma-Regular.ttf', name='Noto Sans Chakma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Songti.ttc', name='Songti SC', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Comic Sans MS Bold.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOsmanya-Regular.ttf', name='Noto Sans Osmanya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W3.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Courier New Bold Italic.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansHatran-Regular.ttf', name='Noto Sans Hatran', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Malayalam MN.ttc', name='Malayalam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Unicode.ttf', name='Arial Unicode MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Oriya Sangam MN.ttc', name='Oriya Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/SFNSItalic.ttf', name='System Font', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Bold Italic.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Myanmar Sangam MN.ttc', name='Myanmar Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXSizThreeSymBol.otf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/SFNSRounded.ttf', name='.SF NS Rounded', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/MarkerFelt.ttc', name='Marker Felt', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansBrahmi-Regular.ttf', name='Noto Sans Brahmi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Narrow Bold.ttf', name='Arial Narrow', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-Medium.ttf', name='Roboto', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Lao Sangam MN.ttf', name='Lao Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Zapfino.ttf', name='Zapfino', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/DIN Condensed Bold.ttf', name='DIN Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-Black.ttf', name='Roboto', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Athelas.ttc', name='Athelas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Narrow Bold Italic.ttf', name='Arial Narrow', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Menlo.ttc', name='Menlo', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Gurmukhi Sangam MN.ttc', name='Gurmukhi Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansYi-Regular.ttf', name='Noto Sans Yi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/KohinoorTelugu.ttc', name='Kohinoor Telugu', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Krungthep.ttf', name='Krungthep', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansNKo-Regular.ttf', name='Noto Sans NKo', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-Light.ttf', name='Roboto', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Bangla MN.ttc', name='Bangla MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansPalmyrene-Regular.ttf', name='Noto Sans Palmyrene', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/BigCaslon.ttf', name='Big Caslon', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/SFNSMonoItalic.ttf', name='.SF NS Mono', style='italic', variant='normal', weight=295, stretch='normal', size='scalable')) = 11.14975\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMarchen-Regular.ttf', name='Noto Sans Marchen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Apple Chancery.ttf', name='Apple Chancery', style='normal', variant='normal', weight=0, stretch='normal', size='scalable')) = 10.43\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansKayahLi-Regular.ttf', name='Noto Sans Kayah Li', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Skia.ttf', name='Skia', style='normal', variant='normal', weight=5, stretch='normal', size='scalable')) = 10.42525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXNonUniBol.otf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Italic.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXNonUniIta.otf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Diwan Thuluth.ttf', name='Diwan Thuluth', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/GillSans.ttc', name='Gill Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Beirut.ttc', name='Beirut', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansCarian-Regular.ttf', name='Noto Sans Carian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOldTurkic-Regular.ttf', name='Noto Sans Old Turkic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Wingdings 2.ttf', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/SnellRoundhand.ttc', name='Snell Roundhand', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSerifBalinese-Regular.ttf', name='Noto Serif Balinese', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Telugu Sangam MN.ttc', name='Telugu Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-LightItalic.ttf', name='Roboto', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/ITFDevanagari.ttc', name='ITF Devanagari', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXSizFiveSymReg.otf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Times.ttc', name='Times', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXVar.otf', name='STIXVariants', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansLycian-Regular.ttf', name='Noto Sans Lycian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansThaana-Regular.ttf', name='Noto Sans Thaana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Al Nile.ttc', name='Al Nile', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-Italic.ttf', name='Roboto', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Academy Engraved LET Fonts.ttf', name='Academy Engraved LET', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Narrow.ttf', name='Arial Narrow', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansKhudawadi-Regular.ttf', name='Noto Sans Khudawadi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-Thin.ttf', name='Roboto', style='normal', variant='normal', weight=250, stretch='normal', size='scalable')) = 10.1925\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMendeKikakui-Regular.ttf', name='Noto Sans Mende Kikakui', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Copperplate.ttc', name='Copperplate', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/NotoSansKannada.ttc', name='Noto Sans Kannada', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXSizTwoSymBol.otf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXNonUni.otf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/PTSerifCaption.ttc', name='PT Serif Caption', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMeroitic-Regular.ttf', name='Noto Sans Meroitic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Tamil Sangam MN.ttc', name='Tamil Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Phosphate.ttc', name='Phosphate', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntUpDReg.otf', name='STIXIntegralsUpD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Raanana.ttc', name='Raanana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXSizOneSymBol.otf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Avenir Next.ttc', name='Avenir Next', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Hoefler Text.ttc', name='Hoefler Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/EuclidFlexRTLBold.ttf', name='Euclid Flex RTL Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Brush Script.ttf', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansManichaean-Regular.ttf', name='Noto Sans Manichaean', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Keyboard.ttf', name='.Keyboard', style='normal', variant='normal', weight=100, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/PingFang.ttc', name='PingFang HK', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansKharoshthi-Regular.ttf', name='Noto Sans Kharoshthi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Malayalam Sangam MN.ttc', name='Malayalam Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Microsoft Sans Serif.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansSaurashtra-Regular.ttf', name='Noto Sans Saurashtra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Oriya MN.ttc', name='Oriya MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Wingdings 3.ttf', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Georgia Italic.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/SFCompact.ttf', name='.SF Compact', style='normal', variant='normal', weight=1000, stretch='normal', size='scalable')) = 10.62\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansTagalog-Regular.ttf', name='Noto Sans Tagalog', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/EuphemiaCAS.ttc', name='Euphemia UCAS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/NotoSansOriya.ttc', name='Noto Sans Oriya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXSizFourSymBol.otf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Bold.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/STHeiti Light.ttc', name='Heiti TC', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Times New Roman Bold Italic.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/PlantagenetCherokee.ttf', name='Plantagenet Cherokee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansNewTaiLue-Regular.ttf', name='Noto Sans New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Lao MN.ttc', name='Lao MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-BlackItalic.ttf', name='Roboto', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Silom.ttf', name='Silom', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Waseem.ttc', name='Waseem', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Apple Braille Pinpoint 8 Dot.ttf', name='Apple Braille', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Sinhala Sangam MN.ttc', name='Sinhala Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Kailasa.ttc', name='Kailasa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W7.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXSizFourSymReg.otf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Iowan Old Style.ttc', name='Iowan Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansBassaVah-Regular.ttf', name='Noto Sans Bassa Vah', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/NotoSerifMyanmar.ttc', name='Noto Serif Myanmar', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOsage-Regular.ttf', name='Noto Sans Osage', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Didot.ttc', name='Didot', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansBamum-Regular.ttf', name='Noto Sans Bamum', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Mshtakan.ttc', name='Mshtakan', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ZapfDingbats.ttf', name='Zapf Dingbats', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/NewYorkItalic.ttf', name='.New York', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Courier New Bold.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Khmer MN.ttc', name='Khmer MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXGeneralItalic.otf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Savoye LET.ttc', name='Savoye LET', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Helvetica.ttc', name='Helvetica', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntUpSmReg.otf', name='STIXIntegralsUpSm', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/MuktaMahee.ttc', name='Mukta Mahee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/GujaratiMT.ttc', name='Gujarati MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/PTMono.ttc', name='PT Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Narrow Italic.ttf', name='Arial Narrow', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansGothic-Regular.ttf', name='Noto Sans Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansTaiLe-Regular.ttf', name='Noto Sans Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansJavanese-Regular.otf', name='Noto Sans Javanese', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansCaucasianAlbanian-Regular.ttf', name='Noto Sans Caucasian Albanian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: Matching sans\\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=11.0 to Arial ('/System/Library/Fonts/Supplemental/Arial.ttf') with score of 0.050000.\n", - "DEBUG:matplotlib.font_manager:findfont: Matching sans\\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=12.0.\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXSizOneSymReg.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXGeneralItalic.ttf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXGeneralBolIta.ttf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/cmss10.ttf', name='cmss10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXSizFourSymReg.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/cmr10.ttf', name='cmr10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXNonUniBolIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSerif-Bold.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSerif-BoldItalic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXGeneralBol.ttf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans-Oblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 3.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSansDisplay.ttf', name='DejaVu Sans Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSansMono.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXNonUni.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXSizOneSymBol.ttf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXSizFiveSymReg.ttf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXSizTwoSymReg.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans-Bold.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 2.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXNonUniIta.ttf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXGeneral.ttf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSerif.ttf', name='DejaVu Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/cmex10.ttf', name='cmex10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans.ttf', name='DejaVu Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 2.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSansMono-BoldOblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSansMono-Bold.ttf', name='DejaVu Sans Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXSizThreeSymReg.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/cmtt10.ttf', name='cmtt10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXSizFourSymBol.ttf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSansMono-Oblique.ttf', name='DejaVu Sans Mono', style='oblique', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSans-BoldOblique.ttf', name='DejaVu Sans', style='oblique', variant='normal', weight=700, stretch='normal', size='scalable')) = 3.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXNonUniBol.ttf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/cmmi10.ttf', name='cmmi10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSerifDisplay.ttf', name='DejaVu Serif Display', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/cmb10.ttf', name='cmb10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXSizTwoSymBol.ttf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/STIXSizThreeSymBol.ttf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/DejaVuSerif-Italic.ttf', name='DejaVu Serif', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/usr/local/lib/python3.9/site-packages/matplotlib/mpl-data/fonts/ttf/cmsy10.ttf', name='cmsy10', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansInscriptionalParthian-Regular.ttf', name='Noto Sans Inscriptional Parthian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXSizTwoSymReg.otf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansLisu-Regular.ttf', name='Noto Sans Lisu', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Chalkduster.ttf', name='Chalkduster', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXGeneralBolIta.otf', name='STIXGeneral', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/AppleGothic.ttf', name='AppleGothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W4.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansNabataean-Regular.ttf', name='Noto Sans Nabataean', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansTaiViet-Regular.ttf', name='Noto Sans Tai Viet', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Trebuchet MS Italic.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Diwan Kufi.ttc', name='Diwan Kufi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Sathu.ttf', name='Sathu', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Noteworthy.ttc', name='Noteworthy', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXNonUniBolIta.otf', name='STIXNonUnicode', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansUgaritic-Regular.ttf', name='Noto Sans Ugaritic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansBhaiksuki-Regular.ttf', name='Noto Sans Bhaiksuki', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOldPersian-Regular.ttf', name='Noto Sans Old Persian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansWarangCiti-Regular.ttf', name='Noto Sans Warang Citi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Tahoma Bold.ttf', name='Tahoma', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOlChiki-Regular.ttf', name='Noto Sans Ol Chiki', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Mishafi Gold.ttf', name='Mishafi Gold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/InaiMathi-MN.ttc', name='InaiMathi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/PartyLET-plain.ttf', name='Party LET', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-Regular.ttf', name='Roboto', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansNewa-Regular.ttf', name='Noto Sans Newa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Kohinoor.ttc', name='Kohinoor Devanagari', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansRejang-Regular.ttf', name='Noto Sans Rejang', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansSiddham-Regular.ttf', name='Noto Sans Siddham', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/ChalkboardSE.ttc', name='Chalkboard SE', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Bodoni 72 Smallcaps Book.ttf', name='Bodoni 72 Smallcaps', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansTirhuta-Regular.ttf', name='Noto Sans Tirhuta', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansImperialAramaic-Regular.ttf', name='Noto Sans Imperial Aramaic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Apple Braille Pinpoint 6 Dot.ttf', name='Apple Braille', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Gurmukhi.ttf', name='Gurmukhi MT', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansPhagsPa-Regular.ttf', name='Noto Sans PhagsPa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansLinearB-Regular.ttf', name='Noto Sans Linear B', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Muna.ttc', name='Muna', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/LucidaGrande.ttc', name='Lucida Grande', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansPhoenician-Regular.ttf', name='Noto Sans Phoenician', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Times New Roman.ttf', name='Times New Roman', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W2.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=250, stretch='normal', size='scalable')) = 10.1925\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/KufiStandardGK.ttc', name='KufiStandardGK', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansLepcha-Regular.ttf', name='Noto Sans Lepcha', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansSoraSompeng-Regular.ttf', name='Noto Sans Sora Sompeng', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/AmericanTypewriter.ttc', name='American Typewriter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/PTSerif.ttc', name='PT Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOldNorthArabian-Regular.ttf', name='Noto Sans Old North Arabian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Farah.ttc', name='Farah', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Hoefler Text Ornaments.ttf', name='Hoefler Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Apple Symbols.ttf', name='Apple Symbols', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Thonburi.ttc', name='Thonburi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/SuperClarendon.ttc', name='Superclarendon', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W9.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Sinhala MN.ttc', name='Sinhala MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Kefa.ttc', name='Kefa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Courier.ttc', name='Courier', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Bodoni 72.ttc', name='Bodoni 72', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Bangla Sangam MN.ttc', name='Bangla Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Apple Braille.ttf', name='Apple Braille', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Rounded Bold.ttf', name='Arial Rounded MT Bold', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Baskerville.ttc', name='Baskerville', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-BoldItalic.ttf', name='Roboto', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/SFNSMono.ttf', name='.SF NS Mono', style='normal', variant='normal', weight=295, stretch='normal', size='scalable')) = 10.14975\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W1.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=200, stretch='normal', size='scalable')) = 10.24\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Apple Braille Outline 8 Dot.ttf', name='Apple Braille', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansKaithi-Regular.ttf', name='Noto Sans Kaithi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMasaramGondi-Regular.otf', name='Noto Sans Masaram Gondi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Avenir Next Condensed.ttc', name='Avenir Next Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W5.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXSizOneSymReg.otf', name='STIXSizeOneSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Shree714.ttc', name='Shree Devanagari 714', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/DevanagariMT.ttc', name='Devanagari MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/DecoTypeNaskh.ttc', name='DecoType Naskh', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Mishafi.ttf', name='Mishafi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansLydian-Regular.ttf', name='Noto Sans Lydian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/AppleMyungjo.ttf', name='AppleMyungjo', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMongolian-Regular.ttf', name='Noto Sans Mongolian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntUpSmBol.otf', name='STIXIntegralsUpSm', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMiao-Regular.ttf', name='Noto Sans Miao', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntDReg.otf', name='STIXIntegralsD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Courier New Italic.ttf', name='Courier New', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansAdlam-Regular.ttf', name='Noto Sans Adlam', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMeeteiMayek-Regular.ttf', name='Noto Sans Meetei Mayek', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Telugu MN.ttc', name='Telugu MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXGeneralBol.otf', name='STIXGeneral', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansCuneiform-Regular.ttf', name='Noto Sans Cuneiform', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Sana.ttc', name='Sana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/AppleSDGothicNeo.ttc', name='Apple SD Gothic Neo', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-MediumItalic.ttf', name='Roboto', style='italic', variant='normal', weight=500, stretch='normal', size='scalable')) = 11.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Futura.ttc', name='Futura', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansBuginese-Regular.ttf', name='Noto Sans Buginese', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Trattatello.ttf', name='Trattatello', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansSundanese-Regular.ttf', name='Noto Sans Sundanese', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/NotoSansMyanmar.ttc', name='Noto Sans Myanmar', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Trebuchet MS Bold Italic.ttf', name='Trebuchet MS', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ明朝 ProN.ttc', name='Hiragino Mincho ProN', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntDBol.otf', name='STIXIntegralsD', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/SFNS.ttf', name='System Font', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansInscriptionalPahlavi-Regular.ttf', name='Noto Sans Inscriptional Pahlavi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansPsalterPahlavi-Regular.ttf', name='Noto Sans Psalter Pahlavi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Avenir.ttc', name='Avenir', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansModi-Regular.ttf', name='Noto Sans Modi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMandaic-Regular.ttf', name='Noto Sans Mandaic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Kannada MN.ttc', name='Kannada MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Verdana Italic.ttf', name='Verdana', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Geneva.ttf', name='Geneva', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/KohinoorBangla.ttc', name='Kohinoor Bangla', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Kannada Sangam MN.ttc', name='Kannada Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Hiragino Sans GB.ttc', name='Hiragino Sans GB', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Black.ttf', name='Arial Black', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Cochin.ttc', name='Cochin', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial.ttf', name='Arial', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 0.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Marion.ttc', name='Marion', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Georgia Bold Italic.ttf', name='Georgia', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Charter.ttc', name='Charter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Trebuchet MS Bold.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansHanifiRohingya-Regular.ttf', name='Noto Sans Hanifi Rohingya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansAvestan-Regular.ttf', name='Noto Sans Avestan', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansGlagolitic-Regular.ttf', name='Noto Sans Glagolitic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Rockwell.ttc', name='Rockwell', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/DIN Alternate Bold.ttf', name='DIN Alternate', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntSmReg.otf', name='STIXIntegralsSm', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/STHeiti Medium.ttc', name='Heiti TC', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansCham-Regular.ttf', name='Noto Sans Cham', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansKhojki-Regular.ttf', name='Noto Sans Khojki', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/SFCompactRounded.ttf', name='.SF Compact Rounded', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Gujarati Sangam MN.ttc', name='Gujarati Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Trebuchet MS.ttf', name='Trebuchet MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Kokonor.ttf', name='Kokonor', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Myanmar MN.ttc', name='Myanmar MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansCoptic-Regular.ttf', name='Noto Sans Coptic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ArialHB.ttc', name='Arial Hebrew', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansTaiTham-Regular.ttf', name='Noto Sans Tai Tham', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Verdana Bold.ttf', name='Verdana', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOldHungarian-Regular.ttf', name='Noto Sans Old Hungarian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansBuhid-Regular.ttf', name='Noto Sans Buhid', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/HelveticaNeue.ttc', name='Helvetica Neue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Courier New.ttf', name='Courier New', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/NotoSansArmenian.ttc', name='Noto Sans Armenian', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansPahawhHmong-Regular.ttf', name='Noto Sans Pahawh Hmong', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/SFCompactItalic.ttf', name='.SF Compact', style='italic', variant='normal', weight=1000, stretch='normal', size='scalable')) = 11.62\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Monaco.ttf', name='Monaco', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Herculanum.ttf', name='Herculanum', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Damascus.ttc', name='Damascus', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSerifAhom-Regular.ttf', name='Noto Serif Ahom', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntUpDBol.otf', name='STIXIntegralsUpD', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Al Tarikh.ttc', name='Al Tarikh', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansTakri-Regular.ttf', name='Noto Sans Takri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansTifinagh-Regular.ttf', name='Noto Sans Tifinagh', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/GeezaPro.ttc', name='Geeza Pro', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Khmer Sangam MN.ttf', name='Khmer Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMahajani-Regular.ttf', name='Noto Sans Mahajani', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansCypriot-Regular.ttf', name='Noto Sans Cypriot', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Nadeem.ttc', name='Nadeem', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Bodoni Ornaments.ttf', name='Bodoni Ornaments', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSerifYezidi-Regular.otf', name='Noto Serif Yezidi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansLinearA-Regular.ttf', name='Noto Sans Linear A', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Arial Unicode.ttf', name='Arial Unicode MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXVarBol.otf', name='STIXVariants', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Andale Mono.ttf', name='Andale Mono', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/NewYork.ttf', name='.New York', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/EuclidFlexRTL.ttf', name='Euclid Flex RTL', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansPauCinHau-Regular.ttf', name='Noto Sans Pau Cin Hau', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Papyrus.ttc', name='Papyrus', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/SFArabic.ttf', name='.SF Arabic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansSylotiNagri-Regular.ttf', name='Noto Sans Syloti Nagri', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Georgia Bold.ttf', name='Georgia', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/NotoNastaliq.ttc', name='Noto Nastaliq Urdu', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Seravek.ttc', name='Seravek', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansBatak-Regular.ttf', name='Noto Sans Batak', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansGunjalaGondi-Regular.otf', name='Noto Sans Gunjala Gondi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntUpBol.otf', name='STIXIntegralsUp', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOldItalic-Regular.ttf', name='Noto Sans Old Italic', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansSyriac-Regular.ttf', name='Noto Sans Syriac', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansVai-Regular.ttf', name='Noto Sans Vai', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NewPeninimMT.ttc', name='New Peninim MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Ayuthaya.ttf', name='Ayuthaya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/SignPainter.ttc', name='SignPainter', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansEgyptianHieroglyphs-Regular.ttf', name='Noto Sans Egyptian Hieroglyphs', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntUpReg.otf', name='STIXIntegralsUp', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansElbasan-Regular.ttf', name='Noto Sans Elbasan', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMultani-Regular.ttf', name='Noto Sans Multani', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W0.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=100, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Palatino.ttc', name='Palatino', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W8.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=800, stretch='normal', size='scalable')) = 10.43\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Times New Roman Italic.ttf', name='Times New Roman', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/SukhumvitSet.ttc', name='Sukhumvit Set', style='normal', variant='normal', weight=250, stretch='normal', size='scalable')) = 10.1925\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Verdana Bold Italic.ttf', name='Verdana', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Devanagari Sangam MN.ttc', name='Devanagari Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Farisi.ttf', name='Farisi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-Bold.ttf', name='Roboto', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansWancho-Regular.ttf', name='Noto Sans Wancho', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXSizThreeSymReg.otf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/KohinoorGujarati.ttc', name='Kohinoor Gujarati', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/EuclidFlexRTLMedium.ttf', name='Euclid Flex RTL Medium', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Corsiva.ttc', name='Corsiva Hebrew', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansSamaritan-Regular.ttf', name='Noto Sans Samaritan', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Luminari.ttf', name='Luminari', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/AquaKana.ttc', name='.Aqua Kana', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntSmBol.otf', name='STIXIntegralsSm', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansLimbu-Regular.ttf', name='Noto Sans Limbu', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Bodoni 72 OS.ttc', name='Bodoni 72 Oldstyle', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Galvji.ttc', name='Galvji', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Apple Braille Outline 6 Dot.ttf', name='Apple Braille', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W6.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=600, stretch='normal', size='scalable')) = 10.24\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansHanunoo-Regular.ttf', name='Noto Sans Hanunoo', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansDuployan-Regular.ttf', name='Noto Sans Duployan', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOldPermic-Regular.ttf', name='Noto Sans Old Permic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/PTSans.ttc', name='PT Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMro-Regular.ttf', name='Noto Sans Mro', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Wingdings.ttf', name='Wingdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Gurmukhi MN.ttc', name='Gurmukhi MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXGeneral.otf', name='STIXGeneral', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Chalkboard.ttc', name='Chalkboard', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansTagbanwa-Regular.ttf', name='Noto Sans Tagbanwa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Tamil MN.ttc', name='Tamil MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Baghdad.ttc', name='Baghdad', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOldSouthArabian-Regular.ttf', name='Noto Sans Old South Arabian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Georgia.ttf', name='Georgia', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/AlBayan.ttc', name='Al Bayan', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Comic Sans MS.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Optima.ttc', name='Optima', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-ThinItalic.ttf', name='Roboto', style='italic', variant='normal', weight=250, stretch='normal', size='scalable')) = 11.1925\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Times New Roman Bold.ttf', name='Times New Roman', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Bradley Hand Bold.ttf', name='Bradley Hand', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansSharada-Regular.ttf', name='Noto Sans Sharada', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ丸ゴ ProN W4.ttc', name='Hiragino Maru Gothic Pro', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansChakma-Regular.ttf', name='Noto Sans Chakma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Songti.ttc', name='Songti SC', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Comic Sans MS Bold.ttf', name='Comic Sans MS', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOsmanya-Regular.ttf', name='Noto Sans Osmanya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Verdana.ttf', name='Verdana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W3.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Courier New Bold Italic.ttf', name='Courier New', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansHatran-Regular.ttf', name='Noto Sans Hatran', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Malayalam MN.ttc', name='Malayalam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Unicode.ttf', name='Arial Unicode MS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Oriya Sangam MN.ttc', name='Oriya Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/SFNSItalic.ttf', name='System Font', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Bold Italic.ttf', name='Arial', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 1.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Myanmar Sangam MN.ttc', name='Myanmar Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXSizThreeSymBol.otf', name='STIXSizeThreeSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Webdings.ttf', name='Webdings', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/SFNSRounded.ttf', name='.SF NS Rounded', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/MarkerFelt.ttc', name='Marker Felt', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansBrahmi-Regular.ttf', name='Noto Sans Brahmi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Narrow Bold.ttf', name='Arial Narrow', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Tahoma.ttf', name='Tahoma', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-Medium.ttf', name='Roboto', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Lao Sangam MN.ttf', name='Lao Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Zapfino.ttf', name='Zapfino', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/DIN Condensed Bold.ttf', name='DIN Condensed', style='normal', variant='normal', weight=700, stretch='condensed', size='scalable')) = 10.535\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-Black.ttf', name='Roboto', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Athelas.ttc', name='Athelas', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Narrow Bold Italic.ttf', name='Arial Narrow', style='italic', variant='normal', weight=700, stretch='condensed', size='scalable')) = 11.535\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Menlo.ttc', name='Menlo', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Gurmukhi Sangam MN.ttc', name='Gurmukhi Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansYi-Regular.ttf', name='Noto Sans Yi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/KohinoorTelugu.ttc', name='Kohinoor Telugu', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Krungthep.ttf', name='Krungthep', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansNKo-Regular.ttf', name='Noto Sans NKo', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-Light.ttf', name='Roboto', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Bangla MN.ttc', name='Bangla MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansPalmyrene-Regular.ttf', name='Noto Sans Palmyrene', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/BigCaslon.ttf', name='Big Caslon', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/SFNSMonoItalic.ttf', name='.SF NS Mono', style='italic', variant='normal', weight=295, stretch='normal', size='scalable')) = 11.14975\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMarchen-Regular.ttf', name='Noto Sans Marchen', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Apple Chancery.ttf', name='Apple Chancery', style='normal', variant='normal', weight=0, stretch='normal', size='scalable')) = 10.43\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansKayahLi-Regular.ttf', name='Noto Sans Kayah Li', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Skia.ttf', name='Skia', style='normal', variant='normal', weight=5, stretch='normal', size='scalable')) = 10.42525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXNonUniBol.otf', name='STIXNonUnicode', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Italic.ttf', name='Arial', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 1.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXNonUniIta.otf', name='STIXNonUnicode', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Diwan Thuluth.ttf', name='Diwan Thuluth', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/GillSans.ttc', name='Gill Sans', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Beirut.ttc', name='Beirut', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Symbol.ttf', name='Symbol', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansCarian-Regular.ttf', name='Noto Sans Carian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOldTurkic-Regular.ttf', name='Noto Sans Old Turkic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Wingdings 2.ttf', name='Wingdings 2', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/SnellRoundhand.ttc', name='Snell Roundhand', style='normal', variant='normal', weight=500, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSerifBalinese-Regular.ttf', name='Noto Serif Balinese', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Telugu Sangam MN.ttc', name='Telugu Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-LightItalic.ttf', name='Roboto', style='italic', variant='normal', weight=300, stretch='normal', size='scalable')) = 11.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/ITFDevanagari.ttc', name='ITF Devanagari', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXSizFiveSymReg.otf', name='STIXSizeFiveSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Times.ttc', name='Times', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXVar.otf', name='STIXVariants', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansLycian-Regular.ttf', name='Noto Sans Lycian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansThaana-Regular.ttf', name='Noto Sans Thaana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Al Nile.ttc', name='Al Nile', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-Italic.ttf', name='Roboto', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Academy Engraved LET Fonts.ttf', name='Academy Engraved LET', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Narrow.ttf', name='Arial Narrow', style='normal', variant='normal', weight=400, stretch='condensed', size='scalable')) = 10.25\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansKhudawadi-Regular.ttf', name='Noto Sans Khudawadi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-Thin.ttf', name='Roboto', style='normal', variant='normal', weight=250, stretch='normal', size='scalable')) = 10.1925\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMendeKikakui-Regular.ttf', name='Noto Sans Mende Kikakui', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Copperplate.ttc', name='Copperplate', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/NotoSansKannada.ttc', name='Noto Sans Kannada', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXSizTwoSymBol.otf', name='STIXSizeTwoSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXNonUni.otf', name='STIXNonUnicode', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/PTSerifCaption.ttc', name='PT Serif Caption', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansMeroitic-Regular.ttf', name='Noto Sans Meroitic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Tamil Sangam MN.ttc', name='Tamil Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Phosphate.ttc', name='Phosphate', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntUpDReg.otf', name='STIXIntegralsUpD', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Raanana.ttc', name='Raanana', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXSizOneSymBol.otf', name='STIXSizeOneSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Avenir Next.ttc', name='Avenir Next', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Hoefler Text.ttc', name='Hoefler Text', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/EuclidFlexRTLBold.ttf', name='Euclid Flex RTL Bold', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Brush Script.ttf', name='Brush Script MT', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansManichaean-Regular.ttf', name='Noto Sans Manichaean', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Keyboard.ttf', name='.Keyboard', style='normal', variant='normal', weight=100, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/PingFang.ttc', name='PingFang HK', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansKharoshthi-Regular.ttf', name='Noto Sans Kharoshthi', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Malayalam Sangam MN.ttc', name='Malayalam Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Microsoft Sans Serif.ttf', name='Microsoft Sans Serif', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansSaurashtra-Regular.ttf', name='Noto Sans Saurashtra', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Oriya MN.ttc', name='Oriya MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Wingdings 3.ttf', name='Wingdings 3', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Georgia Italic.ttf', name='Georgia', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/SFCompact.ttf', name='.SF Compact', style='normal', variant='normal', weight=1000, stretch='normal', size='scalable')) = 10.62\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansTagalog-Regular.ttf', name='Noto Sans Tagalog', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/EuphemiaCAS.ttc', name='Euphemia UCAS', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/NotoSansOriya.ttc', name='Noto Sans Oriya', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXSizFourSymBol.otf', name='STIXSizeFourSym', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Bold.ttf', name='Arial', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 0.33499999999999996\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Impact.ttf', name='Impact', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/STHeiti Light.ttc', name='Heiti TC', style='normal', variant='normal', weight=300, stretch='normal', size='scalable')) = 10.145\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Times New Roman Bold Italic.ttf', name='Times New Roman', style='italic', variant='normal', weight=700, stretch='normal', size='scalable')) = 11.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/PlantagenetCherokee.ttf', name='Plantagenet Cherokee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansNewTaiLue-Regular.ttf', name='Noto Sans New Tai Lue', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Lao MN.ttc', name='Lao MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/Library/Fonts/Roboto-BlackItalic.ttf', name='Roboto', style='italic', variant='normal', weight=900, stretch='normal', size='scalable')) = 11.525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Silom.ttf', name='Silom', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Waseem.ttc', name='Waseem', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Apple Braille Pinpoint 8 Dot.ttf', name='Apple Braille', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Sinhala Sangam MN.ttc', name='Sinhala Sangam MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Kailasa.ttc', name='Kailasa', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ヒラギノ角ゴシック W7.ttc', name='Hiragino Sans', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXSizFourSymReg.otf', name='STIXSizeFourSym', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Iowan Old Style.ttc', name='Iowan Old Style', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansBassaVah-Regular.ttf', name='Noto Sans Bassa Vah', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/NotoSerifMyanmar.ttc', name='Noto Serif Myanmar', style='normal', variant='normal', weight=900, stretch='normal', size='scalable')) = 10.525\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansOsage-Regular.ttf', name='Noto Sans Osage', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Didot.ttc', name='Didot', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansBamum-Regular.ttf', name='Noto Sans Bamum', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Mshtakan.ttc', name='Mshtakan', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/ZapfDingbats.ttf', name='Zapf Dingbats', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/NewYorkItalic.ttf', name='.New York', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Courier New Bold.ttf', name='Courier New', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Khmer MN.ttc', name='Khmer MN', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXGeneralItalic.otf', name='STIXGeneral', style='italic', variant='normal', weight=400, stretch='normal', size='scalable')) = 11.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Savoye LET.ttc', name='Savoye LET', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Helvetica.ttc', name='Helvetica', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/STIXIntUpSmReg.otf', name='STIXIntegralsUpSm', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/MuktaMahee.ttc', name='Mukta Mahee', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/GujaratiMT.ttc', name='Gujarati MT', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/PTMono.ttc', name='PT Mono', style='normal', variant='normal', weight=700, stretch='normal', size='scalable')) = 10.335\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/Arial Narrow Italic.ttf', name='Arial Narrow', style='italic', variant='normal', weight=400, stretch='condensed', size='scalable')) = 11.25\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansGothic-Regular.ttf', name='Noto Sans Gothic', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansTaiLe-Regular.ttf', name='Noto Sans Tai Le', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansJavanese-Regular.otf', name='Noto Sans Javanese', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: score(FontEntry(fname='/System/Library/Fonts/Supplemental/NotoSansCaucasianAlbanian-Regular.ttf', name='Noto Sans Caucasian Albanian', style='normal', variant='normal', weight=400, stretch='normal', size='scalable')) = 10.05\n", - "DEBUG:matplotlib.font_manager:findfont: Matching sans\\-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=12.0 to Arial ('/System/Library/Fonts/Supplemental/Arial.ttf') with score of 0.050000.\n" + "\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABAtUlEQVR4nO3deZxcVZn/8U8tve+ddHc6GwlZnpBAAmFfZEcFEfyJiAoKIqKjjjOuMI4gyqijqDOu44KKCCiK6KASdEDZlCWALEnIk5B9TyfpdKf32n5/nNtJpbq6+lanq6u687xfr7zSdavuvd/qm9Spe8+55wkkEgmMMcaYYL4DGGOMKQzWIBhjjAGsQTDGGOOxBsEYYwxgDYIxxhiPNQjGGGMACOd6ByLyLuCzQDHwX6r6XRE5H/gGUAbcq6qfzbD+F4C4qt6StOwC4EZVPW+QdT4BvB/X4N2oqvcPlmUE3qIxxowLgVzehyAiU4AngeOBXuDvwLuAJcBZwCbgj8B/q+qSlHVrcI3GO4GvquotIhIEPgZ8BnhFVc9Os88TgR8CpwLVwFPAibjGJzXLO1V1xci+a2OMGZtyfcnofOAvqrpHVTuB+4C3AatVdZ2qRoG7gMsBROR2EbnEW/dSYDXw9aTtHeX9eX/yTkTkBBF50Ht4EXC/qvao6k7gUeDiDFmMMcaQ+0tGk4FtSY+3ATcAz6Qsmwqgqtf1L1TVOwFE5JakZcuB60Tk7OSdqOpzuIagf59L02w/kSbLST7fRwnuLGMbEPO5jjHG5FMIaMZ9Hvb6WSHXDUIgzbJ016jiOd5nnPRnQ373eyLwxLATGWNM/rwOd7l8SLluELbgwvRrBu5Os2zrCO9zUsr2H8M1FMPd7zaA1tZO4vHCmvtpwoRKdu/uyHeMAQoxVyFmAsuVLcvlTzAYoK6uAg6+MpJRrhuEh4FbRKQB6AQuAz6Ku+wzG1iH62T+yQjucwnwAxH5BlABnAfc7D2XmuV6n9uMAcTjiYJrEICCzASFmasQM4Hlypblyorvy9w57VRW1S3AvwN/BV4E7lHVx4FrgN8AK4CVuA7e1E5l35I7lVX1WVxH9VLcadJNqrplkCzPHsr7M8aY8SSnw07HkRnAut27OwruG0BDQxUtLfvyHWOAQsxViJnAcmXLcvkTDAaYMKESYCaw3tc6uQxkjDFm7LAGwRhjDGANgjHGGI81CMYYYwBrEIwxxnisQTDGGANYg2CMMcZjDYIxxhjAGgRjjDEeaxCMMcYA1iAYY4zx5HS205Gupywitbjps48EWoC3q+r2QdYN42oY/EBV7xgszwi8TWOMGRd8nSGISImIzBWRWSJS5HOdKcAXgTOARcD1IrIAN9X1pbhSmCeKyIVp1q0RkR8Dn0x56j+AJ1T1KOBHwDczRLgZmDtEnvl+3osxxhwOMjYIIrJQRO4H9uCKzDwF7BaRe0Tk6CG2PdL1lAHehDtDAPgFcKGIFInIJSJye1Lu04GFwO995DHGGEOGBkFEbgK+BtwLNKlqs6o24uoT3w98U0Q+l2Hb6eopX5Vm2f56yqr6gPfznar6nwws7LB/m16D0g40qOoD/fWYRaQad0nqAz7yTM2Q3xhjDiuZ+hBeUtVbUxeqajvu2/V9IvKWDOvnop7yYPWSk30X+KKq7hCRbNfNyJtbvOA0NFTlO0JahZirEDOB5cqW5cqNQRuE/m/rmajq7zI8nYt6yv31kjd7ncbVwO7+J0WkClcy8xivQ3o6cK6IRAbJk1UtZyuQ418h5irETGC5slWoudp6opQEoTgcoqWtm6a68qy3EYnG2NPeQ1N9xSHnSSqQ49ugDYLXefw54Heq+pyIfBn4MPACbnTPziG2nYt6yg8C7wG+BFyB62CO9D+pqvtwl4b638MdwKOqerfXqTzcmsrGGJNRPA4EIRCAsuJQVutGojH++sJm/vbKdk48qomLTzv0BmE4MnUqfwk3GmeniLwO+BBwIa4jOLWzd4Ac1VO+CThFRJZ7eT7srXtQp3IWeaymsjFmRMw9oo7S4jCBQIDqipIhX7+vq4+XX9vJg8+s477HXiMcDnLS/CbOPHbykOvmyqA1lUXkZeAEVe0Tka/hOm+v9p5bqarzRjFnvs3AaipnpRBzFWImsFzZGku51mxp44hJVYRDB3/3Xre5lT88s57evhhlpUW8sqaVr3zwVGoqh25I/BpOTeVMncoxVe3zfj4NN+5//3PDCWiMMYeTWVNqDnocicZYuWk3T72yg+0t3ZyxqIkYQS47a86INgbDlfFOZREpBiqA43HX+xGROmzKC2OM8a2nL8odDy1nV2sv9VVFnLt4GqUnTmdGcw2JRIJAIN0gyNGXqUG4B3e9PYTrmF0vIqcCX+bAzWHGGGMGsa+7j9Wb2vi/5zYSTSToi0V506lzOaK5dv9rCqUxgMzDTm8TkXW44Zk/8xafgWskvjQK2YwxZsz689KNrNnSxooNezh1wSRmTq7i5HnNBIOuAejujdLW2cukERhiOlIyXjJS1ftSHt+W2zjGGDP2tHf28drWLUxtKOfpZdt4Zd0e9u6LMHliGR9/+7HMbK4ZsE5JUYi6ytI8pB3ckH0BInKLn2XGGHO4CgSgs7uPh5duZMnTG0nE4WNXHMO5i6cxqT79DWrBYICSlPsVOrojvLJ212hETsvP9NfpLnAVzkUvY4zJo3g8wW8eX8OGbR28/oQpvOXMmUQiUFlaQrAuRFmJ/yoDpcUhpjflb/qLIZOq6oAJ7NItM8aYw00ikUA37mHOlGqmNFVx6jGT2drSQTjsvjOXl2ZXciYcClLj46a2XMk0dcVbM62oqvePfBxjjClsu9t72LuvGwgyc3I1Mr2eYDCw/8a0yQ2FOQmmH5mar/uA7bjpJVIvESVwU2AbY8xhY0drFw89s449bRE+evlCgoHAuLqAnqlBeC9uIrlK3LDTe1R172iEMsaYQrKlpYOfLHmVI5rKOeWoZo6cUkMoOP7uz810H8LPgJ+JyHTg3cATIvIqcAfwkKpmVUvAGGPGmvbOXjq6+1i/fR9HTq7mzEVTmDaGLwkNxU+n8kZcLeIvencqfxE3r9GUodZNV9ReRM7HVTQrA+5V1c9mWP8LQFxVb/Ee1+Lukj4SaMFNw709ZZ1K3JTa83Anc19U1V96z30CeD9uuO2N1g9ijEln5aZWVm1opbGujCOn1HDy/Emcfkz+ZiEdLb7OeUSkSUQ+hqtG1uz9PdQ66YraL8B9WF8KHAWcKCIXplm3RkR+DHwy5an/wNVAOArXKH0zza5vBDaq6kJcsZxvePlPxJXwPNbLdJuI1A/55o0xh42VG/awbP1ufvTACtZubWPhrIk01pYPmK10vMo0yqgceCvuctEi4NfAB7OoIbC/qL23vf6i9qtVdZ237C7gcmCJV8/gAa9S26XAagbWXXgTcKb38y+A73qFfC4ELvHqKj8GKICq7hSRPbgqaxcB96tqD9AjIo8CFwN3+nw/xphxqrMnws//tIruvghTJlby+WtPorKsKN+xRl2mS0Y7gF24gjifA/oARGQxgKq+MMS20xW1vwF4JmXZVG971/UvVNU7vX3dMtg2VTUqIu24Og0PAA94y/+v/8UicgVQAvQX1Fmabt9+WU3l7BRirkLMBJYrW4eaKxKNs3TFFpat2sHebtcd2tUb5aLTZvK647L6WBjRXPmWqUHor1V8FXAlBw+uSuCu42eSbjBWuuoy2XROp9tm2vVF5HLgv4E3eo2H73UHYwVy/CvEXIWYCSxXtkYi1449Xfz+iXX0dPURBcpLi/j4FccRDASGve1C+32NaE1lVZ1xiHnSFbW/O82ybArdb8Fd/tksImGgmgMN134i8s/Ap4DXq+orKesm7/uxLPZtjClwe9p6eHl9C3Oaa3h6+TZeeW03Zx0/jWNnN3DHQyuIESAWTUAiTmlRkMqKIkpKi3j/m4529xQc5oYcZSQii1MvD6VblsbDDCxq/1HgOhGZDazDFd35SRZ5H8TdG/El4ApcB3MkJdtbgI8Bp6vqpqSnlgA/EJFv4Ir+nAfcnMW+jTEFbtXmPbywYhedHV3s7ohQVAzPrtxBeWmYqrIwPdEEHZEofRG44crF+Y5bcPx0nf/Y57KDDFLU/nHgGuA3wArcXdD3AYjI7SJyyRCbvQk4RUT6+wQ+7K17idcpDfB53JDW34vIi96fE7zO8Ltw/QhPAjd5GY0xY1RvJMarG1v3P5bpEzjl6EaOmzuF6vIgRUVFVJeH+fOzm+jtixKPxigtDlJRFmKwevKHs4D9UnyZAayzPgT/CjFXIWYCy5Wt5FzRWJydrV1Mnuiule/d18MTL29lVnMlj728jbaOXmKxBGWlxSQScQIE6I0niEcT3HDVYsIjeLdxof2+kvoQZgLr/ayT3VR8xhiTZyvW7OLJFzfx6oa9BAJwwQnTWPLMRuqrSikvhWXrdrJ++176+hJEY3GaGyo4df4UHn5uPbFEkEAsSiKYGNHGYLzIdB/CPtKPCgoACVWtzlkqY4xJY1dbFz+4/yX3YR4MEovDM8u3EYnH2dPWRUlxmGgkxj4ihENhykuLOWvhFGZPrefpFVvp6e4lWBRg9tTafL+VgpTpDOFo7+8A8EfcjV3GGJM3O3d3U1MZYl9nDBIBJlQWEwgHKQ+H6eiJ0r6vl7KiEMFgmHecN4fJjQe+t1570dEZtmwg87DTDf0/i0hv8mNjjMmH0tIQwVARlSVBumNx9uzro762lIh3LaO4KASJKLFEbDzNSj1q7CKaMWbMOHJyLb29MSgporaylFg8Tm9vD7t2dRKL9REIBgmEQvRFEjy7cme+44451iAYY8aMzu4I0USAeCRCTyRKaUmYUDBMRUUxkd4EnT291FWW0B2JUlNdnO+4Y47fEpo1qSU1bepoY8xo+d0Tr9HWEeXt583i/BOnsXNXJ/NnTaC+soQdrd28uHonvZFyEoEEZy2aQmlRiIm15fmOPeZk6lT+56SfN6Y8thKaxphRU11RTFEoREk4zBtOm3XQeP/K8hJmTanNX7hxJFOn8jmjGcQYYwZz7uLp+Y5wWBi0D0FEbhWRkgzPl4rIF3MTyxhzOIrHEzalRB5lumT0N2CpiDwE/AF4DQjhpr2+EFdc5t9yntAYM+5FojECgQA793ZTVVZEVbl1COdDpktGD4nIk7gJ5L6Oq1EcA1bhJqQ7VVUzTtyRp5rKAeA2XIMVB96vqn/znrOaysYUkEg0xqaWDn735Dqm1JVz4WkzrDHIo4xzGalqB/AV709WkmoqHw/0An/3ylb+BDgL2AT8UUQuVNUlKevW4BqNdwJfTXqqv6bym0Tk3biaylek7PoyXL3m+cBs4EERmQccx4GaytXAUyLyaH+JT2PM6Prdk2shkWBKQzlvOGEqE6ttVFC+5XJyu3zVVH4T8EtVjQOrRGQDcBpwDlZT2ZiCsbO1m4qyMCfOa853FOPJZYOQl5rKg+x3qrfcaiqPokLMVYiZYPznisXiJHAVzRrr3ZnAv197St5zjbRCzeVXLhuEfNVUHuw1VlN5FBVirkLMBOM7VyKRoDcS4/7H1xKLJ3jjSdMIxGJ5z5ULhZZrRGsqJxORI4CzgSLgUVV9zcdq+aqpnK528tZBlltNZWNy6PsPLGNnazfvfr1QWV5MQ21ZviOZDIacy0hE3gA8B/w/4BLcUNRLfWz7YeA8EWkQkXJcZ+9f3SZltoiEcDWVl2TaSIr+msowSE1l7zVXikjIq908F3epaAlwmYiUe3WezwMeyWLfxhgf1m9v46nl7nveafMncebCKRw5uYZGawwKnp8zhFuBs1R1BYCILMDVJv7fTCup6hYR6a+pXAzcrqqPi8g1uJrKpbgP7/01lTnQqTyYm4A7vJrKe4ErvXUv4UCn8n3AycDL3jrvU9Vu4FmvE3up976tprIxI2jr7g7aO3t45IVtRCJxTl0wmUVzGvIdy2RhyJrKIvKiqh6bsuxlVV2Yy2AFZgZWUzkrhZirEDPB2M/V2RPhgb+tZ/XGvUyoLeE9bxSqygad5GDUco22Qss1nJrKfqa/7haRE/ofeD93DSegMWb82ba7i3Vb2jlt4SQ+cMnROW0MTG75uWT0aeAPIrLaeyy4eweMMYepzu4I37r/ZS47cxZzp9Xymfccn+9IZgQM2SCo6hMiMh93XT4IPK2qqSN7jDGHkaKiIEc0VlJbadNMjCd+RhkFgWuBdwBPANd7I4SMMYeJSDROR/eBAX3F4RDvukBorLPpJsYTP30ItwELgZO8x28E/itniYwxBScaixOJHNoNZabw+WkQzgOuAXpUtR14PXBBLkMZYwpLWUmYuurSfMcwOeanQYh4E8UBoKq9QDR3kYwx+dLTF+XBpzfQa2cDhyU/o4yWiciHgZCICPBx4MWcpjLGjKpEIsHDz22isrSItVvbeN2iyfmOZPLAzxnCvwCLgSZcFbVK4F9zmMkYM4r27uvlmWXbeeQfm4kl4nzkrQupKivKdyyTB36GnbYD7xuFLMaYURSNxVm+bhe79vZwyoJmTpjfRDjk5zuiGa8GbRBE5Kekn64aAFW9NieJjDE5lUgkuPNPr9JQV87iOQ0smDnRGgIDZD5DWOb9fTowHTd1dRQ3y+haPxsfbk1lEZmOm0CvEVDgSlXtEJE5wO1APbAL+ICqrsqw/18Dy5NqMvuu52zMeBJPJGjr6KW8pIiS4hD11eUcN3sik+or8h3NFJBBvxao6tdV9eu4D+UzVfW/VPXbuNKYc4bacFJN5TOARbgb2hbgaipfiqt7fKKIXJhm9e8B31PVebipt2/ylv8U+KmqHgP8G/CrDPu/Fjg36XGZz30bM66s2tjKbx5fw9d++SI9fW6A4JtPm0FzgVYANPnj5zyxCehNepwAJvpYb39NZVXtxE1Lvb+msqpGcWcBl4Ob/lpELvFqJJ/pvR7gDg7MnXQc8GsAVX0amCwiR4rICSLyYP+OvToI1wDfT8pz0mD7Nma82rhjH/f832rWbW3jwpOmUWGdxSYDP8NOHwYeEpF7cGUo38OB+sWZDKumsog0A+3eh/ZBrwFeAN4J3C4i5wETgEmq+nfgIm/9MO6y0geBtw+Rx2oq51Ah5irETDCyudZt3csT/9jKzClVLJZJXHJWLxt27OPU46YxaUJ2l4gOh9/XSCrUXH75aRD+GfgwrmJaArgX+IGP9YZbUzlT7eNrgG+LyD/jKqC9BPSlvPYW4H5VXeFum/C1XV+sHoJ/hZirEDPByObq6Yvyg9+9Qmd3hHAwzrwptSyePZHFsydCPJ7Vfg6H39dIKrRcI1pTWUSqvSGn1cDPvT/9aoE9Q2x7uDWVW4BqEQmpaizlNWHgLara5026dz2wLmX9twG9Xh/CJO+9dALPkr7WsjFjWldPhK27O2israCyvIjr3zSfkuIwxUU2B6XJTqYzhEdxN6Tt4uBv9gHv8VD/2h4GbvHqF3fiaip/FLjOu8a/DldT+SfJK6lqRESewI1mugd3iaq/7vKXgF/i+hGuA55LnYrb64gGQERu8ZbdJiKlePWcB9u3MWNJNBrniVc28+TL24lGYrzvzQuoriimqsIK1JjhGbRBUNXF/a9JnsvIr0Osqfwh4Gci8llgI67fAFwfxJ3eB/0W3CWk/ipuX1DVizLk6Rls3+bwEU8kCACBQLoriIOLRuMEgwGCQX/r9UViOfmG3huJEYsl6OiJcOefVrJrdwdHTq2htqKU6U3VI74/c3jxU1N5M/Bj4MequnFUUhWeGVhN5awUYq6Ghipe0e2UlYSJRuNsb+1mwYx6X+t+6a7nqCgt4l/etojO7j50014Wz23k1XW72bynkwuOn84zr24nHAgwdVIVX77zed506hFccOL0/dt4evl2TlkwacC2l29sRabWEA4OPejvuZXbePCZzexp7+HiU4/gqBn1TJmYm8EOhXgMwXL5NZyayn46lc/HfRP/u4gsB34E/C5pFJAxY0b/jVjb93TSWFs25OvjiQTBQIAzF06motR94y8tCTNnai0AR0yqprHebeeo6fUEAlBWGuas45qZ3HBw8Zj5gzQ+x85tJNITSftcv75olIee3ciWli7qK4uYM62GcxZPJeSjETHGLz9zGa0EbhSRz+CK49wMfBd3f4IxY1J1eQklxZk/TLt7o+xs7eaISVWcsfDA7J8te7spLXb/dcrLiij3xvZXVxwoJ/mWM2bR2XPwd6bk55PVVpXSkqZB6OqJ0hOJsWnnXn7+0GrefNoRTJFGjp/X6O9NGpMlP2cIiEgjcBVwNa5T+T9yGcqYXCsvHfqffllJmCMmDRxXPqm+gp7eKD/700qa6so4//hpB80F1NLazdpt7Zw8f/jfmWLxOPc+tgpd18rrFjVz9YVHMW96LUVhGzlkcmfI/xUi8nvcfEb3Ader6jNDrGLMuLeno4cNO9rZuquTU+ZPorbywMiejTv3sXTljmE3CDv3dtHa3ktXZ4QzFjZz2oLJVq3MjAo/ZwgPAO9U1Y5chzFmNK3Z2saRzdUZRxyt297OtIZKYrEEO1u7mdbkOnAnT6jk5vecxHO6k80tHQc1CMdLI8dL9pd1Xl67mydf3MLioxqRqbVccsYspjUW5t3xZnzy04fwo9EIYsxoO6Kpasjhp1MnVhIMBOiJRmmeWD7g+aNn1hMMBli2djcTaktp9jqtozE3UnuoaaU7eyJUe+Uq6yqKmTOthhlNVVSWFVFVnr7PIRqLk0hAUdg6lM3I8tWHYMx40N7Zx/Y9nfT2xZk8sWLQD9QXX2uhKBxkWkMVG3a0kwgk+OPf1nPe8dM56agmOrsj6KZWFs9tpLQ4TCKR4JEXtjCzuYpJdWXMm1HPsrW7CAcDyPR6aioPvlGsty9GSXGIf6zeyZJnNxEKBPjUO49jWlMV05qq6OiOEAoGB73n4TndQVd3lHOPnzbivyNzeLMGwRw2KsuKmFhTNuS36zlTawkSoLg4yNSGKiLRGPNn1LNw1gTAdTb3DzsFd5Pb+y8+iuKi0P5tHzu7Ad24l0jMffvf19VHZVkRiQRsbumgqb6cTTs7aaotZe4R9QSTzlQqh5iR9JT5zYfwWzBmcEOec4rIrWmWfTM3cYzJnWAwQDgUHPJSS0VpEWWlYULBIHVVJTTWlXPpGbP2DzUNBgMDLueUlxYdtO3y0iKOm9vAxJpyYvE4qza10dMX4+HnN/HymhYikRiXnD6T971pAW89Z25u3rAxWco0ud3ngTrgChGpSXqqCLgE+JccZzMmZzp7IrR39tGcYTronr4ou9t6mNJQyQurW5g9uYbqimL6IjF2tHYf1OG7fU8nG7bvY9bkGibWlvGzh1ZSWV7EZWfOoqM7ynOrdxCNR5kysYKeSNn+UUNdPVFeWrWDiqLQgEtLg9mwfR+RWJzZU9x/y7bOXmps/iIzAjJdMnoGOBE3RXTyBHJR3ER1xoxZZSVhiocY019SFKKxzt2FPG9a7f4zhOKiEE11B+5y3tPeQ29fjEWzJ+5/zdnHTmblht18874X2buvj0AwQNHcIAtmTkjJEaKhoZ72ti7f2ZsnHOjcTiQSdPVErUEwIyLT5HYPAg+KyBJVfXY4G89HTWURCQHfwU2zHQB+pKr/PVie4bwvM/Zt3rmP4lCYSWlGDvWLJxL0RuJEYwleWdPCsXMbKQmGiccT9ERiRKJuorktLR1s39NFcVFw/9QYG3e28+zKFgIEmNFcyWVnziJ1GqzWfT20dfRS1RWhsjjEUHXuO7ojdHT3URIOEkskmFhTTiAQyHiWY0w2/Ixb2yQifxSRVSLSKCJ/8qqaZZTHmsrvxVVSW4grm3m9iCweJM98H+/fjEOlRSFaO3r2P47F4wMmLozFEnT3RQmHArR29LF7b7f32gRdvRFeXrOHp1ZsgwDMmV5DZ3eMnXu6eHVjK8vX72XhkfVc9+b5XP3G+VSWl9DZffBUFnVVpTTUltPdFyMSHXpC4fLSMBOqS3l1UyuvvLZ7yNcbky0/DcJ3gd8B3UAr8CLuW/pQ8lVTeRnweVWNe/tdC0zLkMcchorC4YNmF927r5f2roOL78UTCfoiMYrCIba0dPLyGlcTKhKNsbuth1OPnsRJ8yZRVRFm3ZZ2Nre08/jL26guD9Pa3kt7d2z/GQPAttbOg7YfjcVZtXkvbe09xKKxITMHA65T/B+6g6UrW+iN2PySZmT5aRBmeDenxVU1oqo3ANOHWon0NYyvSrNsf01lrxbCRIauqUxKTeXn+mshqOrTqrrce81puLOExwfJk1VNZTN+hEIBorEDH8ITasoOutsYXB/CxBrXV9BUV0ZZifvvUlwUpLGmjK27O1i3vY0nX9rKn5duIpGAUxY0MqGmjLrKEoKBBOu2tQPQ1Rvh6WU7aO880OjsbO3mZ0tW0lRfvn+CvH6xeJyO7oET3gUCAcqKi6gsLyIYsBvTzMjycx9C3CtXCYCIVOGvIclXTeX+nGfhqqtdqaqtInLINZWzrU86Wgq1sHch5urPVFMboyeeYOLESl/Fck47bjqrN+ymts7d0PbK+nX87xPrCAfjlJeW8L0bzqO4yP13+uYvn2djyz5ue8frqK1yDUp3b5SJ9eU0NVZR6Q1ZbWio4me3vDHt3cy9kRi/uv8lTjpqEsfPn3TQUNmLzpxFXzTB5OaaAeuNtEI8hmC5csVPg3A/rhZyjYh8AFe6Mt21+1T5qqmMiLwV+B/gClV9NEOerGoqW4Ec/woxV2qmxqoSdu1yU3RFonG27+k6aChpW0cva7a2sXhuI/XlYZrqyvn7Cxv464tbqSkLU1tZRCgR45qL5tHm9S+s376P+dPrSMTjRHqitPQc2N9xsybQ3dlLd2fv/mWbd3bQ2FhJtCdCeenBZwkny0QmVBfz/LKtTKwpJR5PUFddyqRq18jk+vdbiMcQLJdfSQVyfPMzl9GXROQ9uLOCC4Af4q8PIS81lUXkRFxjcIGqvjxEnut9vA8zDiUSCeKJxP4CM0XhIA21B88oWlVRzPwjXFGbl9fs4vlVO3l1QyuzJ1ezcPYEjpnVyO62HkLeN/xoLE5tZRHTmyohAH3R2EFDW2ekmUq7vrqYsuIwHb0D+wOOnFIHQE1Fyf75iwCWrW2hpy/BCVYXwYwwX1NXqOqdwJ3ZbDiPNZU/672vO0WkP87NqvpAmjzDGk5rxqa2jl627Opgx+5OykrCVFeW7C8/2RuJsmZrGwtmTOBvy7YxZ0oNe/b1sKu9h5XrW9m6q5OiUJCr3zCPGZOqWbpyB7F4gtWb9lJUFKCuqpSOnig7W7tYeORE7v7zKq68QDh2zsT9+9+4o4NZUw6+zPM/v11OXU0p11w4L2P2/stK8USC+x5fS2t7H/Nn1Puq62CMX35qKkcY2GfQhRvNc62qvpqjbIVkBlZTOSuFmKuhoYodO9vZ19VHIsFBncixWJyWvV1MmlDJtt37qK8qZfvuLu75y2uEQgEmVBfz3gsXEAwEWL+9jaa6CspKDnwYr9+6l7rqMqoqigkGXId1ODR0MZtla1qoqCphZmO17/fR3xnuZ/uHohCPIVguv3JVU/mbQDvwbVwn7HXAPNy3+/8Bzs4+qjH5EQwEqKkoYdPODorDwf3X7UOhIJO8660rN7UTjexlcn0Z7zp/DuFAgO2t3fsnoAuFAqT2Q9fXlFNaHNr/Gr8f1qUlYSpKs7vLONcNgTl8+WkQzlHV45Mef11EnlXV94vI53IVzJhcmtJQcdAMowCd3X0sX99KV3eE6ooSJtSVMam+gs7uPrqSrvFPaxj4bX6weslDqa0qo66uDGJZDXgzJif8NAjlItKsqtsAvLuU+ydysQuYZkxKbgz+8Pd1bNvdzemLmmieWM7x0rC/sxkgnoCK8mJeWrubptrSg242O1QTa0ppqK8oqEsN5vDl5wP9K8A/RORPuHsEzgc+LiI3A0/mMpwxuRSLx1m9aS/rtrYTDgc4alp92nsSqsqLqSovpqm2jMAgRWuMGQ/8NAhLcDOfvgE30+mtqrpaRGYAm3OYzZgR1dbRy87WLrr7YnR29xEAqiuL+af/d3Ta6/JdPVHKS8PEEwl2tnZRXlpEdUodhEg0xpZdXQOGlL62uY2S4iDTGqto6+yDRIKWvd3MTiqsA27UUDY27+ygLxolGk0wd3pdVusaMxQ/DcJj3iRzB40mUtX1OUlkTI789IFlbNu9j007Oznr2MlcePKMg0YKpdrV3s300iqeWb6DOVOqqUpTyawoHGJa48BLSDOaK+mNuH6BsmLX2MycPLDvYeuuTsorSwcsH0xdVQmlJeWs39bOvq5eqspt2mszcvw0CBu8OYGeVlXr+TJjzo7WLlas30NTXSmzplRREg5xzKyJaaeMSDa90X3rnz6pksqK4kGnuEjub+gXDoX2n3UUFw0+KmhqQyVV5cX0eHcv79jTSVlJ0aCd1BVeo1RZWmSjjcyI89MgHIXrK4iISC+uHyGhqv4HThuTB1t2dbBs7W5e0BYqK4o5fdEUFs+aMPSKKfpvXhsNnd3+it00WQ0EkwN+GoTXDf0SYwpLbyTGfY+9xo7d3VzzRmF6UxXTptaP+GieRCLha3I8v46ckvsJ64wZjJ+5jDaIyHFAJe7sIATMBn6U42zGZCUai9PZHaGmsoSiUJB3nDOHitKi/bOL5kLL3m6KwkHqqvz3A2Syt6OXmgyXp4zJpSEbBBH5Ea7CWRlu/qDZuEtI1iCYgtLR3ceWlk5qKksIBgM0jeD9AoPvM8qM5pGb8rgvGiNB+jngjck1P5eMLsDNhfE94Au4ojI3+Nl4Pmoqe+t/Ang/bg6mG1X1/sHy+HkfprBFojE27+xk5uRqarMYsTMSpjVWDrjj+VA01g5e49mYXPNT6GabV3JyJXCMqj6Gq2qWUb5qKnvTX18FHOvt+zYRqbeayuNLJBonFneD3orCobRDOkdDcuEaY8Y6P/+a+0TkTGAF8EYRqcFHg0D+aipfBNyvqj2quhN4FLg4Qx4zhsTicdZvb2PlhlY6ugfWEDDGDJ+fBuHTwAdws5seh7tUc5eP9fJSU3mQ/U7NsNyMIcvX7iGRSDB7ag01w5xQzhiTnq+ayqp6pffzySJSC5zgY7181VQebP10jZ/VVM6hkciVSCSIROP7b+467xC3OZ5/V7lgubJTqLn8GrRB8IaaBnCVx97FgQ/aIlzH7owhtp2vmspbgEkp+3jMy281lUfJSOTavquDFRtamdpYxdxptQOej8ddGcyh7jgeyUy5YLmyY7n8Gemayv+EG2E0Gbg/aXkU7zr+EPJSU9l77Q9E5BtABXAecLP3nNVUHgM6u/t4YVULpcUhjplVT0Nt+uGj+7r7iETjTKwpS/u8MSY7gzYIqno9gIj8R7qhoUPJV01lVX1WRO4Clnrv7yZV3eK9zmoqF7BnVmxjy65OJtVVMLWpkhlN1Rlv0PIzxYMxxr8hayobwGoqZy3bXPu6+vj5n14lHoe3nTOLSfUj318zXn5Xo8VyZafQcuWqprIxORGNxemLxCgrCdPe1cc/vWWhTdlgTB7ZXTVm1G1u2cf3/3cZm7bvo7s3SiAQYMrESmsMjMkzO0MwObdrbxdPLd/E6k0d9ETiRKJxwuEQpaVhJliHsDEFw8/kdpcDtwF1uKGbVg/BZOWXf1lFIhEnHgCCAcqLg/zL2xdRXDSwApkxJn/8nCF8Efg47i7hwupRNQUvFo8TCgXp7o4TjycIJSBUFEpbZcwYk19+GoTW/tlCjfEjEo2zcsMeJpQXEQoGOXpGPft6+qgvL2FacxVN9ZXWIBhTgPz8r3xmkBlJjRkgFo/z0tpd3Prjp/fPRvq6RVO56OQjOeWYKUyZWE3YGgNjCpKfM4SLgI+ISB9u3iDrQzBpte7r5qnlO3njydM5+/jpdOzryXckY0wW/DQI5+U8hRmzevuiLF25k9OObqa2spTXnziNYCBAWWmRNQjGjDGDnruLyLnej8cP8sccpmLxOG1dfXT3Rmnr7OOJV7bT3efuJ/A70ZwxpvBkOkN4J/AX4J/TPJfg4AnvzGHku799hR27O5kzrZZrLpzPv125ON+RjDEjINPkdu/3/j5nuBvPQU3lOtwU2lOAXuB6VX0xw/5/DSxX1Vu8x0Pu2wyteWIFXd19nLZg0tAvNsaMGTk7v89RTeWPA6+o6iLgVuA7GfZ/LXBu0uMyn/s2Kdo6evnz0o30RlwRu8vPms2NV53I3On1eU5mjBlJubzgm4uayiGgvyRRBdDtrZtcUxmv3sI1wPeT8pw02L7NQIlEgmdf3UFPX5TVm9uYf0QtxeFQvmMZY3Iol3MZpathfAPwTMqy/TWVAUSkmcFrKn8NeFpEtgLVuAI+qOpzuOGxiEgYV9Htg8Dbh8hjNZVTxOJxWtp6CAK///t6midUcMK8xnzHMsaMAl8Ngoi8DTgWV7HsUlX9hY/VclFT+TvAd1T1WyJyKnCviMxX1Y6k194C3K+qK0TE73Z9Ge81lePxBC+tbuFrdz3Pnbe8kW9/8lyKwsM/iSzE+rKFmAksV7YsV274mdzuRtw38WnAfwGfE5HZqnrrEKvmoqbypXhlL1X1KRHZgesPWJq0/tuAXq8PYZL3HjqBZxlYa9lqKgNbd3WgG/fwwN828vn3ncQXrjuZPXs6855rpBViJrBc2bJc/gynprKfr3/vwF2O6fTqF5+Cq4U8lIeB80SkQUTKcTWM/wqIiMwWkZC3nSXJK6lqBOivqQwH11R+CXgLbiNzcJeBVqWsP09VF6nqsbg+hO+r6m24S1UZ93046uyJ8PhLW4lEY7z9nCOpKiuiurw437GMMXngp0GIqGpv/wNV3QtEhlrJq2PcX8P4ReAeVX0c19n7G2AFsJKkmsoicom3+odwo5JW4M4o+oeHXg1cKyLLgF8CV6tqW2qn8iB5egbb9+Hmtc17efLlLQCUl4S59IyZvP6kmZx69GQrUmPMYWzImsoicj/wY9wwz1OBTwKnqOqbcx+vYMxgnNRU3rB9H7c/uIKScJAb33Uc4XBuxhUU2ukzFGYmsFzZslz+5Kqm8keAnwMLgU7gaeDK4UU0+dY8oZyLTzmCo2fW56wxMMaMTUN+IqjqVlxfQDkQUtXCaQKNL7vaukkADTVlFBeFOHm+3WFsjBnIzyijSbhr7/XeYwBU9dO5DGYOTWdPhG/+5iVKwiE+ccVx+Y5jjBkD/FwzeADYDKzJcRYzAl7b3Mb2PV3MmVbNCXMbmTyxIt+RjDFjhJ8GoVhV35rzJOaQRGNx1m1v43ndRVE4wMnzG3n9idPzHcsYM4b4aRCeF5GjVXVZztOYrMViceKJBDv3dtPdG+Pyc2ZZvWJjzLD4aRD+BrwoIttIuv9AVY/MWSrjy2MvbeGhpzfyvovnMXtKHZMn2OUhY8zw+WkQbsHd1Wt9CAXit0+sobK0mPkz6jhxQRPTG628tTHm0PlpEPao6q9ynsRkFI3F+Ma9L1EcDlBdUURpSRFTGir5wPzmgroZxhgzdvlpEP4oIl/DTfmQPIXFCzlLZQbYtLODSDxOLJrgqjPmMbGmLN+RjDHjjJ8GoX8iu8uSliUA60PIsWdXbKeqvJijZtTTVFfBv191Qr4jGWPGMT93Ks8c7sbzUVPZm8n0O7hJ8QLAj1T1vwfLM9z3lkubd7azZus+ljyzkbOOm8JRM+opL7VpJowxuTXop4yIfFpVvyoi30r3vKp+NNOGk2oqH4/78P67iDyKq2t8FrAJdznqQlVNnYa6v6byL0XkJlxN5Rs4UFP5IhF5M+6D/4yUdd8LTMDNvVQGLBWRx4EdafL8VVVXZHofo+3HDy5nV2s3dVUlfOCSBcxstg5jY8zoyPS1s837e/cwt72/pjKAiBxUU9lb1l/XeImI3I67K3oJrqbyW7zt3AE8hmsQBq2pDHxBVS8ClgFPqWoc6BSRtbjiPscMkucLw3x/I6azO8JLa3awZ28fkODUo5s47egphEN2P4ExZvRkahA+APxAVT8/zG3npaayqj7dv3EROQ04CXg3rsZyap6ThvneRsTW3R20d0a4/Q8rOOWoRk5fOJlmu5fAGJMnmRqEQ62Ukq+aygCIyFm4IjpXqmqriBRMTeXlr+3i+799ie6+ONMbK7j2zQs4TpqorhhepbJCreNaiLkKMRNYrmxZrtzI1CCUishxDNIw+Bh2mq+ayojIW4H/Aa5Q1Ucz5BnVmsqdPX3cseRVKsvDBIIwb3o1F586kwk1ZfR29dLS1Tv0RlIUWlGOfoWYqxAzgeXKluXyZzg1lTM1CEfi7j0Y7Jv+UMNOHwZuEZEGXGGdy4CPAteJyGxgHW5I60+SV1LViIj011S+h/Q1le8arKayiJyIawwuUNWXh8hz/RDvYURsbungH6t3smxdK4F4nO27e7j1upNHY9fGGONbpgZhhaoOeyJ9Vd0iIv01lYuB21X1cRG5BtfQlAIPklRTGXhAVR/A1VT+mYh8FtgIvNPb7NXAD0TkRtxIof01lTnQqfxZ733d2V+7AbhZVR9Ik+fZ4b4/vx57aQtPvLSFvt4EkxsruPCUI5hQXZrr3RpjTNYGraksIv84lAZhnJlBljWVt+7upLcvytKVO+jsjvCGE49gcsPI9EEkK7TT1H6FmKsQM4Hlypbl8mekayo/PgKZDkubdnbw+TuWcuM7j+OtZ8624aPGmDFh0AZBVf9lNIOMdbF4nHjSmKWvf/h0aoY5asgYY/LB5kMYAY+/tIWK0jAzJlUzoaaMaY0jf2nIGGNyzRqEQ9De2ctPHlxJRVkRR8+sZ4LNQGqMGcOsQRiG3kiMkqIQPZEYF50ynab6cmoqSvIdyxhjDok1CFmKxxNs393FEZOqaKwtp7G2PN+RjDFmRNjwlywFgwGOmDS2b083xph0rEEwxhgDWINgjDHGYw2CMcYYwBoEY4wxHmsQjDHGADkedpquqL2InA98A1fv+F5V/Wya9aYDdwGNgOKK3HSISB2upsIU3Gyn16vqi2nW/wTwflyDd6Oq3j9YnhF+y8YYM2bl7AxBRKbgitqfASwCrheRBbj6B5fiCtucKCIXpln9e8D3VHUe8Bxwk7f848ArqroIuBVXQS11vycCVwHHevu+TUTqB8kzf4TerjHGjHm5PEM4n/RF7Ver6jpv2V3A5cCS/noIuGI4Z+IK4QDcATyGq8ccAvpvAqgAur3tJNdDuAi4X1V7gB4ReRS4GFfoJ12eL/h4LyFw9yAUIsvlXyFmAsuVLcs1tKQsIb/r5LJBmMzAovY3AM+kLJsKoKrXAYhIM9CuqtHU1wBfA54Wka1ANXCBt+5zuIagf7/JJTX710+kyXOSz/fSDFBXV+Hz5aNrpGo9j7RCzFWImcByZctyZaUZWOPnhblsEAYrvZkqtdB9uvX6X/Md4Duq+i0RORW4V0Tmq2qHj/XTXR5L3fdgluLqMW8DYj7XMcaYfArhGoOlQ72wXy4bhHRF7e9Osyy10H0LUC0iIVWNpbzmUrw6yKr6lIjswPVFJL/hLcCklH08hmsohtr3YHqBJ32+1hhjCoWvM4N+uRx2+jBwnog0iEg5rqj9XwERkdkiEgLehesz2E9VI8ATwBXeovckveYlvL4FEZmDuzy0KmW/S4DLRKRcRBqA84BHBsnz0Ai+X2OMGdNy1iCo6hagv6j9i8A9qvo4cA3wG2AFsBK4D0BEbheRS7zVP4QbBbQC962+f2jq1cC1IrIM+CVwtaq2icgJIvKgt99ncUNWl+K+1d+kqlsGyfNsrt6/McaMNYFEwl/ReGOMMeOb3alsjDEGsAbBGGOMxxoEY4wxgDUIxhhjPNYgGGOMAaxBMMYY48np9NdjlYjU4ibEm4qb3mIr8Iiqbsu03mGcax5uosDkXA95c0zlM1cthfn7KrhcdgzHTa5DOo52hpBCRP4fbsrts3AzqlYBZwN/8+opWK6Dc30Id5MguJsBn/d+/pFXlyIvCvj3VXC57BiOm1yHfBztDGGgLwOnqmpL8kJvGozHgXvykqpwc/0rcKyqdiUvFJFvAC8AX89HKAr391WIuf4VO4bZKNRc/8ohHkc7QxgoAexNs3wf+Z3ptFBzRYCiNMvLvOfypVB/X4WYy45hdgo11yEfRztDGOh2XM2F+zlQP2ESbjK8H+ctVeHm+iLwDxF5hAO5moFzcXNH5Uuh/r4KMZcdw+wUaq5DPo42l1EaXhnOC3GzqQZwU2ovUVXf84rnKNcJuEJAhZZrMq5CXnKuh1XV7/Tiucplx9F/JjuG2eUquGPo5Tqk42hnCOk9D5RwcE/9y3lN5GwAfgssV9X9xX1EZLGqvpCvUN4/tjuT8rwz3x8kHjuOPtkxzFrBHUM49ONoZwgpROQ04GfAemC7t7gZmANcq6qP5CnXFcA3gD1AMXCZqi7znntBVRfnKdd70iz+AnAzgKremeb5nLPjmFUmO4bZ5Sq4Y+jt+5CPo50hDPRD4CJVXZ28UERm474RHJOXVPAZ3AiCFu8f5J9E5AJVXUH6sqGj5YO4/6C/T8pRBZyD63zLy4cJdhyzYccwO4V4DGEEjqM1CAOFUv8BetaS34NN/zA3Vb1XROLAgyJyOulrVY+W1wGfA44GPuD9J/mHqr43j5nAjmM27BhmqQCPIYzAcbQGYaA/iMjvcTd4JI8guBJ4MG+pYKWIfBX4lqpuVtVfi8gk3Ljn0nyF8upe3+z9Z3hARL5Ifv9T9LPj6JMdw6wV3DGEkTmOdh9CClX9FHAHrhbzp4EbcL32P1XVT+cx2rVALyD9C1T128AngJbBVhotqvo34PXA24HGPMex4zgMdgx9K9hj6GUZ9nG0TmUz4kSkUlU78p3DDJ8dw/Eh2+NoZwiDEJEf+lk22sZCrv5/gIWWK9Oy0VaIuewYZmcs5Mr2OFqDMLjf+1w22ixXdiyXf4WYCSxXtoadyy4ZDUJEQkAD7maY3V6HTd5ZLmNMrliDkEJEGoFv4W6Xb8MNb6sCngA+rKobLVfh5zJjn4gswt2YNg1338HHVHWf91w+bwAbt7ls2OlAv8JNXnVl/7dc79vvO4C7cWN9LVeB5xKRn5JhyJ2qXjuKcfYrxFyFmMnzPeBjuKkqbgX+KiJne9fF83kfwrjNZQ3CQI2qelfyAu+D7m4R+bc8ZQLLla0ngP8GPgX05DFHqkLMVYiZAMpV9a/ezx8Ska/hxte/IZ+hGMe5rEEYaK2IfBr37Tb5Zpj3AGvylspyZUVVfyIic4GZqnpjvnKkKsRchZjJs09ELsSVgEyo6idF5G7gN0C55Rr5XDbKaKArcdfgngC6gG7gSWAKcE3+YlmuYfgckJcJ0IZQiLkKMdMHcPMGvTtp2XtwU1ccmZdEzrjNZZ3KxpgxR0QmququfOdINdZz2SWjFCJSjpsu9m0cPAf7EuCzqtpmucZUrstxZyuWawxlSsp1E24KhgG58pFpvOeyS0YD3Q10AGcDFbghlGfj5mP/Rd5SWa5s9ec6i4NzbcNyjYVM4HJ1MjBXIfzbGp+5EomE/Un6M3fu3BUZnltmuSzXeMtViJksV35y2SWjgVpE5HLgN/2l8UQkAFxBfmcytFyW63DKZLnykMsahIGuwt3gcbuI9F87rcaNork6b6ksV7Ys19jOBJYrW4ecy0YZDUJEwsBE3B1+LaoazXMkwHJly3L5V4iZwHJl65By5et6V6H/mTt37sV+llkuyzVechViJss1urlslNHgLvW5bLRZruxYLv8KMRNYrmwNO5ddMjLGGANYp3Ja3mRQl5Nyo5Wq/sZyWa7xmKsQM1mu0c9lZwgpROQLwEnAXRyYrK0ZeBewQlU/abks13jKVYiZLFd+ctkZwkBXAEf1j+PtJyK/AJYBeTnYWK5sWa6xnQksV7YOOZd1Kg/UgzvdSnUE0DvKWZJZruxYLv8KMRNYrmwdci47QxjoE8ATIrKKg+f3F/I7nbPlyo7lGtuZwHJl65BzWR9CGiIyHzd751W4jpm7gb+q6pOWy3KNx1yFmMlyjX4uaxBSiMg/AdcD9+FmCQTXMXMZcJeqft1yWa7xlKsQM1mu/OSyBiGFd7p1rKp2pSwvB15Q1XmWy3KNp1yFmMly5SeXdSoPFAGK0iwv857LF8uVHcvlXyFmAsuVrUPOZZ3KA30R+IeIPMLBY3nPBf49b6ksV7Ys19jOBJYrW4ecyy4ZpSEik4Hzgcm4GQO3AA+r6lbLZbnGY65CzGS5Rj+XNQjGGGMA60MwxhjjsQbBGGMMYJ3KZoSJyLeAM72H84F1QLf3+AdAjar+Zw72ezvwS1V9eKS3XUi8CcxeU9U7U5ZPxFXHCozgvqpwY9rfgpsn522qenHKax4FvqOq96UsvwX4HPA+Vf1J0vIK3Bj5x1K35T1/CvBlYALuC+sm4JOqulxEKoFfA29V1e7Udc2hswbBjChV/Wj/zyKyHrhSVZ8bhf1el+t9FAJVvXkUd/cV4Eeq2i0iw1l/I+6O2Z8kLbsM6Ez3YhEpAf4AvF5VX/CWXQUsEZGZqtrhTdR2K/mbQG5cswbBjBrvW+NEVf2I11jcA7wJ923wc8DpwPG4MdOXqOpWEZkCfAeYjhtj/UtV/VKabT/qve454BHgQeBkoB74d1W9N+X1YeDbwBlAH7AWeK/3ofMWL08IaAc+rqrPJudP834eBfYA84D/wX2T/b73OA58X1W/JSI1wDeBY7z38wjwqeS6t95rNgFzVXW7t+xp4PO4b+rLVPVrIvJW3FDDLmBpyvt7H/Ah3Lfs3cBHVHWlt+3vAscCCWAJ8JnUursiMg24GPgoPnlnL8mN1kPAW0Rkqqpu9pZdjZueeZ63zgnA7ap6LFAO1AKVSZu9G3cMQkAM+BXwFRG5TVV3+M1m/LE+BJNPpaq6CDcp1w+Bb3qPN3FgMq6fAz9R1eNxc72fLyJvH2K7RwJ/UtWTgBuAr6Z5zanA2cBCb9trgYUiMg/3QX6Zqi4Ebgb+V0SqfbyfVlWdr6rfBr4HrPLuDj0VuF5EZgP/BTzv7fM4XDH0jydvRFXbgN/ivl0jIkfhxpP/qf81ItKE++Z9mbetDUnPnYX74H2dqh7nvf/7vae/hWsgjgFOABaR/tv2pcBfUhqK14nIi8l/vG3057455QwmgvsAv9LLNR2owk3F3L/Oc15jgKq2Ap8GHhKRtSLyc+C9uGGTfd5reoAngYvSZDaHyBoEk0/9VZzWANtV9aWkx/Xe9eazgFu9D5+ncWcKxw6x3QjuDAHgBdxZQqpXcN84nxGRW4HfqOrfcTfxPKKqawFU9S/ATtyZy1CeSPr5fFwjh6q2qerRqvoa7lv3B7z38zyukTsmzbZ+hPtQB/eh+NOUee7PAF5R1RXe4x8kPfcmYDbwd28/X8X9PuuBC3HX/BOq2otr/C5Ms/95wGup709Vj03+gzsjy+ROvAYBeLf3eFCq+g2gCXdmsg3XoP/DO7PptwY3g6cZYXbJyORT8hzt6W6tD+Furjmtf34Wr/O0Z4jt9iV9eCa8bRxEVfeKyCLcZapzgXu9DvF0OYK4yzup2ypOeV1H0s9R7/V4uY8Ednnv6XJVfdVbXpv8uqR8T4pIWEROwlW8Oi3lJalZkr/Jh4Cfq+oN3j6CuBuVWhn4JbD/vaWKe9s5JKq61Hsfx+Iud50NXJLutSJyOu5Y34brS/iDiHwG13hfgOvgxsvVd6jZzEB2hmAKlqq2484KPg77Pzz/hruccUhE5GLc9fu/q+otuG+ui4C/AK/3PsARkXOBacAzQAtwvIgEvLOX12fYxcO4b/b9fQKPAHNwl30+5m2jBHgA+Mgg27gd18/xsqpuTHnuCWCB16jBwfPd/xl4p4g0e48/6O0fb/8fTtr/9cD/pdn3Ktylt5Hwc9ylslWquifD61qAz4rIGUnLmoEKXKPQ70hg5QhlM0msQTCF7l3AKSLyCu5D+ReqevcIbHcJsBxYJiLP4b6B3+JdgvkQcL+ILAP+E3izd13/btyH1mrcJamnMmz/I8BRIvIyrhH7sqo+j7sU0v8B97L3d7o+DoCf4S6P3Z76hKq24H43d4vIC8DMpOf+hBsh9H/e/t+FG6qZ8Pbf6O33FUBxHdOpfgecIyK+zxJE5Av9Hcsp7sINRb4jzToneJe1UNVVuCGuX/L6EFbg+iCuV1X1Xl+C65P5vd9cxj+busIYk5aI/BDXofurfGfpJyLXAAtU9VP5zjIe2RmCMWYwn8aNjirLdxDYf6Pcu4Bb8hxl3LIzBGOMMYCdIRhjjPFYg2CMMQawBsEYY4zHGgRjjDGANQjGGGM81iAYY4wB4P8D7VcVkAPLW+EAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABMu0lEQVR4nO3dd3hUZfr/8feU9N4TIECQJlVdWhCSBQQCkoAUQRFcBSkuWFZZpaiLCKhfVkQEVxF0fyxgAwmBUCQKiIDSlKIIAgklpNdJm3Z+fwRGhiRMgklmiPfrurwu58ycM5+ZE3LnnOec51YpiqIghBDiT09t7wBCCCEcgxQEIYQQgBQEIYQQV0lBEEIIAUhBEEIIcZUUBCGEEEA9FISEhAQGDx7MgAEDWLNmDQD79u0jNjaWAQMGsHjx4puu//bbb7N06VKrZd999x2PPvpoleusWrWKmJgYBg4cyI4dO26aRQghxFVKHUpLS1P69Omj5ObmKkVFRUpsbKxy+vRpJTo6Wrlw4YJiMBiUxx9/XNm1a1eFdQsKCpSZM2cqnTp1Ut555x1FURTFZDIpK1euVLp166Y88sgjlb7nTz/9pAwdOlQpLS1VsrKylH79+im5ubmVZjlz5kxdfnwhhLit1OkRwr59++jRowe+vr64u7szcOBAtm/fTrNmzQgPD0er1RIbG8u2bdsAmD17NklJSQAkJSXRvHlzHnvsMcv2zp49y9mzZ5k3b57V+xw/fpwnnngCgD179tC/f39cXFwICAigW7du7Nq1q9Is195XCCFEHZ8yysjIICgoyPI4ODiYTZs2VViWnp4OwPz58+nXrx8Aw4YNY9KkSWg0GstrW7Vqxfz58/Hx8bF6n44dO7JixQrLewYHB1ueCwoKIi0trdIs195XCCFEHRcEs9mMSqWyPFauzpJx47LrH9fGe95IrVZXmqU231cIIW532rrceGhoKIcOHbI8zszMJC4ursKy6/+ir433zMzMtNp+REQEiqL84ffNzS3CbHasqZ8CAjzJztbZO4YVR8wEkqumJFf1OWImtVqFn59Hjdap04LQs2dPli5dSk5ODm5ubuzYsYM5c+bw+eefk5KSQpMmTdi8eTMjRoyotfeMiori5Zdf5rHHHqOkpIQDBw7w9NNPA1TIcuNYhC1ms+JwBQGQTDUguWpGclWfI2aqqTotCCEhITz77LOMHz8eg8HAyJEj6dq1K6+//jrTp0+nrKyM6OhoYmJigPJB5b59+1rGEarr+PHjvPPOO6xYsYJOnToRFxfHyJEjMRqNPPXUU4SEhABUyNKpU6da/8xCCHG7UimKTH9dXdnZOof7KyAoyIvMzEJ7x7DiiJlActWU5Ko+R8ykVqsICPCs2Tp1lEUIIcRtRgqCEEIIQAqCEEKIq6QgCCGEAKQgCCGEuEoKghBCCEAKghBCiKukIAghhACkIAghhLhKCoIQQghACoIQQoir6rQg1HY/5YKCAiZNmsSgQYMYO3as1TTXNzIajYwePZoNGzZYllXVa1kIIUQ1C4Jer+f8+fNcuHABg8FQrQ2np6ezePFi1q5dy8aNG/n00085c+YMs2bNYvny5SQmJnLixAl2795dYd3CwkJmzZrFRx99ZLX87bffpkuXLmzdupVRo0Yxf/78Kt9/2bJlJCcnWx4fO3aMTZs2ER8fz9q1a3nzzTfJy8ur1mcRQog/g5sWhFOnTjFt2jS6dOnCgw8+yIMPPkj37t157rnnOH369E03XNv9lAF27dpFbGwsAEOGDGHPnj0YDAaSkpKYPXu25XVHjhzh1KlT9OnTx7Ksql7LQgghylXZD2H58uUcOnSIkSNHWvUx1ul07N27l/nz59O1a1emTZtW6fqV9TC+1q/g+mXX91O+ZtiwYQBWp4tu3KZWq8XT05OcnBz69etn6aGg0+lYuHAh7733HosWLbJat2PHjpbH13otCyGEKFdlQWjdujVPPvlkheWenp7ExMQQExPDzp07q9xwffRTVhQFtdr6IGfu3LlMnjyZwMDACnludOO6ttR0bvH6EhTkZe8IFThiJpBcNSW5qs8RM9VUlQXhvvvus7nyzV5TF/2Ug4ODycrKIjQ0FKPRSFFREb6+vpbndTod+/fv5/Tp0yxdupQrV65w4MABtFptlb2Wa0Ia5FSPI2YCyVVTkqv6goK8+OmXKzQK9KTMYEJvMOHl7lzj7ZTojZjNZjxca77ujWq1QY7BYGDx4sUcP34cgH//+9/cc889jBs3juzsbJsb7tmzJ/v37ycnJ4eSkhJ27NhB9+7dOX/+PCkpKZhMJjZv3kxUVFS1w0ZHR7Nx40YAEhMT6dKlC05OTpbnPT092bt3L/Hx8cTHx9O3b1+eeuop4uLiiIqKYseOHZSUlJCTk8OBAweIjIys9nsLIcTNZOaXAuVnLmr6h6PRZOKLr8/w+pojJKfar9hVeYTw1ltvcf78eUaPHs2hQ4dYu3YtK1as4Ndff+X111/n//7v/2664brop/z000/z4osvcv/99+Pl5WUZI0hKSuLrr7++6VVHN+u1LIQQf1TnO8pPU7s6a3F1vnm7erOiYDCaOXomA7VZ4VKWDicnNS0b+dAq3Lce0lauyp7KsbGxrF+/HmdnZ9544w1ycnJ44403AIiJibFcHfRnIqeMqscRM4HkqinJVX2VZTKZzVxI1xER5l3h9SfPZ3LyXA6nLuYS4ONOUYmBfz78l1rNdCunjKosYxqNBmfn8vNYR48eZdSoUVbPCSGEqJpGrSY8uOIv5JO/ZRB/4CJlehPd7gzB1U1LRLCPHRJWdNPjGr1eT0lJCSdOnLCcnsnPz6/0ih0hhBDWtJryYVpdiZ4PN/9MicFAkI8793dtghG4u3UwZrNieZ29VVkQhgwZwvjx4zGbzXTv3p0mTZpw9OhR3nrrLcvNYUIIIapWpjdx4nwWWw9cQIUCKhUP922Fu9vvVxGpNbd+6X1tq7IgTJw4kSZNmpCZmckDDzwAwOHDh+nevTtTpkypt4BCCHG7URSFvcevsPvHy2g0Kvx9nOnYIpDenRpbXpOvK0OjUePp5nSTLdWvm54yunYF0DUTJ06s0zBCCHE7yswtJiUtn6Yh3uw9cYXcglK+OZpKZIdgurQOoUWjimMEzk4a1GrHOTqAakxud+P0EVUtE0KIP6vCYj1nU/NZueUXth1IISO3hNnj/kKXNsE0Dan8DmY3Fy0uTtYX6GTmlnDJjldQ3fxiWX6fcsLWMiGE+DMymc18vPkkaqB9C1/Cg9xpEeZDgLcrzlp1jQaMXVw0aO14EafNgvDUU09Va5kQQvzZlJQZSU4rINjfDV8PZ3p3asKJc9n4erugUqnw9nCp0fa8b2G6i9pUZUGw1UBmwIABtR5GCCEcXW5hKRq1ivwiA42DPLijkQ9RXZpZbkzr3DLIxhYcV5UF4amnniIwMJAWLVpUOEWkUqmkIAgh/nQycopYte0UTYM9GRHVErVKhbNTw7lRt8qCsGDBAuLj4ykuLmbYsGHExsbi7V3xFmwhhGjovj91hR0/XKJTRAAjercgPNgLF+eGUwiuqbIgDB8+nOHDh5Oamkp8fDxjx46lRYsWDB8+nN69e9e4l4AQQtxudCV6MnJKKC0z4+vuxF/vboSPp6u9Y9UZm7/VGzVqxNSpU0lISOBvf/sbH374IdHR0dXaeEJCAoMHD2bAgAGsWbMGKG+tGRsby4ABA1i8ePFN13/77betLnEtKChg0qRJDBo0iLFjx1r1N7imqKiIp59+mtjYWGJjY9myZYvluVWrVhETE8PAgQNtjpEIIf6czIpCSnoh3xy+xIlz2QT4uhLZLpTpI+9q0MUAqnGVEUBWVhabN28mPj6e0tJSxo4da3Od9PR0Fi9ezIYNG3B2dmbMmDF069aNWbNmsXr1asLCwpg8eTK7d++uUGAKCwtZuHAhW7ZssboZ7u2336ZLly588MEHbNy4kfnz5/P2229brfvBBx/QqFEjlixZQnZ2NkOHDqV79+6kpqayadMm4uPj0el0jB49mm7dulk12BFC/LmdTc0nLbuIbd9foHmYF+MGtsXZnteB1rMqjxBKSkqIj49nwoQJDBs2jIsXLzJ37ly2bt1arakr9u3bR48ePfD19cXd3Z2BAweyfft2mjVrRnh4OFqtltjYWMs02rNnzyYpKQko72/QvHlzHnvsMatt7tq1yzKP0pAhQ9izZw8Gg4GkpCRmz54NQLdu3Rg3bhwAAQEB+Pr6kpWVxZ49e+jfvz8uLi4EBATQrVs3du3aVfNvTAjR4KTlFrN2x2lWbv4FlUrFkw904G+D7vxTFQO4yRFCz5498fPzIy4ujunTp1s6k508eRKA9u3b33TDGRkZBAX9fvlVcHAwK1asoFOnTlbL0tPTAaya2wwbNgyoeEf09dvUarV4enqSk5NDv379LI117r33XsvrExMT0ev1tGzZkrVr19KxY0fLc0FBQaSlpd30M9xIeipXnyNmAslVUw01V1GJnt8u5nAhrZBLGTrcXJ355WIuM8b9hdZN/e2SyRFUWRD8/PwA2LRpEwkJCVaXnqpUKstf81Uxm82oVL/P03Ft/RuXXf+4phRFqXJwe+vWrSxYsIAPP/wQrVZb6ZTdNR0YlwY51eOImUBy1VRDzrXnxwsc/S2HwqJSDCYVzUO9mTehO8AtbdsRv6tabZDz9ddf/6EwoaGhHDp0yPI4MzOTuLi4CsuCg4Orvc3g4GCysrIIDQ3FaDRSVFRU6RjA6tWrWblyJStXrqRNmzaWPNcPQmdmZhIREXELn0wI4aguZxVSVmYCFI7+lsmltEIeHnAnabklfHX4IipFoVRvwsdDjWJWo9XAHY29eOi+O+0d3SHY/BP52ikiW8tu1LNnT/bv309OTg4lJSXs2LGD7t27c/78eVJSUjCZTGzevJmoqKhqh42Ojmbjxo1A+emgLl26WE5lXbNz504+/vhj1q1bZykGAFFRUezYsYOSkhJycnI4cOAAkZGR1X5vIYTj++ZgClu/T2H7oYucTS2koNTAdycu89PpdJw1KrzdndEbFXIKjDw1qjP/HNudB/u0tXdsh2HzKqPZs2dbfgnfbNmNQkJCePbZZxk/fjwGg4GRI0fStWtXXn/9daZPn05ZWRnR0dGWKbZnz55N3759LWMBlXn66ad58cUXuf/++/Hy8rJ0cUtKSuLrr79m/vz5vPPOO5SVlVkNfL/22mt06tSJuLg4Ro4cidFo5KmnniIkJMTWxxdCOLA8XRlleiMh/h4AtLsjgOISM6jMHP0tC7NJTUp6ESgKWq0KvcGIu6sad2ct6munqx2oQY29qRSZurTaZAyhehwxE0iumrodcuUUlFJmMBJ29Vx5cloeuYV6DHojx85nk5VbglFR4eGixWQ2o1apKTUa8PN0ZeqwTjd7m1vO5ChqdQxBCCEcjcls5rcLOWz+7hxXsnQE+Lpzb4cQtiWepEOEP79dzOFydjEarZayMgMGk0K7CD/KDAbSc8rQaMBQolBYarD3R3FIVRaEu+++u9IrgK5dGXTkyJE6DSaEEDf64Zd0vv3xMgoqTCYDV9KL2FyQgsloZs9PV9AbTBj1elzc1KAoeHg4MbBrU4r1Rtbv/BWDyYyflzNRHcPs/VEcUpUFYfPmzUB5AZg8eTIffPBBvYUSQojKnDybi7ubltz8ItxdtAT5uZKWq8fJSYObi5aS3CLcXdU4aVWMub8jXq5OuLk44enuwqOxHcGsoABuro7Tx9iRVFkQGjf+vRm0s7Oz1WMhhLAHtROojODh6oxKZeZilg43F2ec1CpUgEalQqMCs8pMkLeb1VkOdxcpArbIlKVCiNtGn86N0JcacHN3xaTSotebCPJ2xlBWir6sDC93J0waFYVFJi5kFNg77m1HCoIQ4rZRoCujTG/GbDShBlydNWTll2IC9GUm8ovL0Gqc0RvMeLnZtx3l7ahaLTQLCwsrTBctHdOEEPVBURTWJv1CeIA37e4IpHWLAIrLTPRsH4KPhwv7fk4jK7eE4lIDnk4aYrqGYzIq+Hu72Tv6bafKgrB69WrL/4eFhVk9lhaaQoj6oihQUGigzMdEoLcrk0fcbXXNf2ykTEFTW6pVEIQQwl7UahVTH+hs7xh/ClWOIbz99tvo9foqVywrK7PZ8UwIIcTto8ojhHvuuYcRI0bQu3dv+vTpQ9OmTVEUhQsXLrBnzx527drFP/7xj/rMKoRo4H67lEdEI2800rPdLqr81qOiovjkk0/w9fXl9ddfJyYmhiFDhvDmm2/i4+PDJ598Qt++fW+6cXv0VFYUhTfeeIOYmBgGDx7M4cOHLc9JT2UhHIvRZObspRwW/O8wh09n0CxUioE93XQuIw8PDyZNmsSkSZNqvGF79VTevn07Z8+eJTExkZSUFCZPnkxiYiI///yz9FQWwoF8sfssQT4uODup6d0xlGA/N4wmM05aKQj2UmffvL16Ku/evZvBgwejVquJiIggLCyMo0ePSk9lIRzMj2cyARWR7RvRu3NjwoO8cHOR+Tbtqc6+fXv1VM7IyLDqwnatd3JGRob0VK5HjpgJJFdN1WYus1lBV2LA26P8hrH3XrgPtfrWehE44vfliJlqqs4Kgr16Klf2vmq1Wnoq1yNHzASSq6ZqK5feYOLDLb/QrW0Q4SFehPi5O0Su2uSImeqsH8Lly5f54YcfMBqNdOvWjWbNmtlcx149lUNDQ8nIyLA8zsrKIjg4WHoqC2EH//fJUcIC3OnSJogWjXzw93a1dyRxEzb/RP72228ZMWIEX331FUlJSYwcOZKdO3fa3LC9eipHRUWRkJCAyWQiJSWF5ORkOnbsKD2VhagnyWkFpGbqAGgS5MEdjbzpdmeIFIPbgM0jhCVLlvC///2Pli1bAnDmzBlmzJjBfffdd9P17NVTOSYmhmPHjhEXFweUj024urpKT2Uh6lh+cRnFRXr+3/ZTNA/xYnzMnTzUr7W9Y4kasNlTeejQocTHx1sti42NJSEhoU6DOSIZQ6geR8wEkqumqpsrT6cn6fAFfvg5jbtbB9O3S2MCvd1/b2Jvp1z1yREz3coYgs1TRq6urhw/ftzy+Pjx47i5ySyCQohy3x67zNnUQvp1bcqov7Yk2MejzoqBqFs2TxnNmDGDKVOm0KxZM1QqFefOnWPJkiX1kU0I4aDOXMxl68ELTIntwOAezRjUrRlauaHstmezIHTp0oUtW7bw008/YTabueuuu/Dz86uPbEIIB6UoCpqr/69Rq6XVVgNhczeazWbWr19PYmIiXbt25bPPPsNkMtVHNiGEgygzmDCafr+Xp3VTf/4+vDPOTpqbrCVuNzYLwptvvsmvv/7KsWPHgPLLUBcuXFjnwYQQjkNXoqekzGjvGKKO2SwI+/fv5/XXX8fFxQVPT09WrVrFd999Vx/ZhBAOIsDbDS936VHc0NksCFqt1mqKB2dnZ7RamYBKiIYot6CMY2ez7R1D2InN3+ytW7dmzZo1mEwmzp07x8cff0zbtm3rI5sQop4YTSaOnM5AbzRz/Gwune4IsHckYQc2jxBmz57NyZMnyc7O5qGHHqKoqIhZs2bVRzYhRD0o1Rv5fNdvbNhzjohQb6YO62DvSMJObB4heHp6smDBgvrIIoSoRwajmf0/X8FZq6F/l6YM7t4cH08Xe8cSdlRlQZg5c+ZNV5QrjYS4PRUW64nfe447m/oTEeJF42AvubNYADc5ZdSqVStatWpFYWEhv/76K23atKFdu3YkJydX+z6EW+2pnJqaytixY4mJiWHq1KkUFRUBkJyczCOPPEJsbCzjxo3j/PnzVb630Whk9OjRbNiwwbJMeiqLPzO9wYSiKBiMZopLjbRp5kN4iLcUA2FR5RHC448/DsBXX33FmjVrLPMXPfjgg4wfP97mhv9IT+W5c+fy8MMPc//997Ns2TKWL1/OjBkzmDlzJqNGjWL48OH8+OOPPPPMMxUm3rtm2bJlJCcnWx4fO3ZMeiqLP6WLGYV8degSZrPC2P6t8fd2ZVKcjBOIimwOKmdnZ+Ps/Pv1xyqVitzcXJsbvtWeygaDgYMHDzJw4EAAhg8fbnnNL7/8Ypku+6677iIjI4OLFy9a9VQGOHLkCKdOnaJPnz6WZdJTWfwZ7f7xMu99eRy9wcBdLQOlZ7G4KZsFITIykokTJ7J+/Xq++OILJkyYQN++fW1uuLKeyps2baqw7Pqeyv369SM3NxdPT0/LvQ5BQUGW17Rr144tW7YA5TfM5eXlkZmZSb9+/Sw9mXU6HQsXLmTevHkV8lTWa1mIhiY9p5ivD6eQU1BCkyBPutwZgoerM63DfewdTTg4m38uvPTSS6xZs4avvvoKgEGDBjFmzBibG77VnsqVLbv2+PXXX2fevHmsXr2aqKgo2rZtW6Fj2ty5c5k8eTKBgYEV8tyopj2Vazq3eH1xxObejpgJGn6u9JwiViScpLDEQNsWwfS4qwk97mpi91y1zRFzOWKmmqqyIOh0Ojw9PdHpdAwdOpShQ4danisoKLB57v1Weyr7+/tTWFiIyWRCo9FYvcZoNLJs2TKcnZ0xGAx8+umnNGny+w+7Tqdj//79nD59mqVLl3LlyhUOHDiAVqutlZ7K0iCnehwxEzTsXJl5xQR4u1FmMPHIwNaE+Hng5qL9Q9ttyN9XbXPETLXaIGfcuHEA9OjRg8jISMt/1x7bcqs9lZ2cnOjSpQuJiYkAbNy40fKaxYsXk5SUBMAXX3xBx44drabi9vT0ZO/evcTHxxMfH0/fvn156qmniIuLk57KokH65sgFXvt/3/P+ppMUlxlxc9HSPNRHxgrELanyp+bLL78E4Oeff67xqRX4Yz2VX3nlFV588UXee+89wsLCeOuttwB4/vnneeGFF3j33XcJCQmx3AtxfU/lqkhPZdEQGIxmnLRqMnOLWbn1F3S6Uny93Wge5o2nm5PtDQhxEzZ7KkdFRTFy5EhGjhxJo0aN6iuXQ5JTRtXjiJmgPNeBny7RNNiLy1k63F00BPt52FxPbzQyd9VB/vqXJvT/SzhpOUXojSaaBnuz78QVAn1caBbqzelL+RhNZhQzfLHrLM+N6UyAd/nl2kWlBi6kFXJnc3+rbZeUGcksLKNpoO0cAOt3/caJ5Fy0GoV7WgXRpqk/LRrVzWCxI+9HR8vliJnqpKfyRx99hF6v56GHHmLChAls27YNo1HmRRe3pxZh3jhp1ZjMZjxcqvcXtVajIaKRN82Dy39pe7k54eNePsVDk0B3An3ccNJoCPFxo5G/O6H+bjQP9cR83d9aLk5qAn1cK2zbxUlDWFD1/tGu3XmazPxS3F01tGzsy6AeEXVWDMSfk80jhGvMZjPffvsty5Yt49KlS+zbt6+uszkcOUKoHkfMBNa5cgtL8fOq+Av6eln5JaiAAB83q+XnUgsID/bE6SY9hMsMJgxGc7VO41T1fRWVGtCqVRw5ncHOQ5f4S9sgmoX60P6Go4y6cjvsR0fhiJlu5QihWiNP2dnZbNq0iS+//BJFUZg6deotBRTCUdgqBgAB3pW/JiLMi/yiMnb/lMrdLQNpGuJt9fzlTB1qNYT9gcuUC4v1fJJ0hrwiPfe0CqBflyZEtg+rcEm2ELXJZkGYMmUKR48epX///sybN4/OnTvXRy4h7K6qX74qlYpDpzLYfyKNlLRCpsR1sOotnHTkElq1mof7t67xeyqKQnZBKZcyC8kuKKVdc196tA/Dw1UGjEXds1kQ+vbty7///W88PKo36CXE7cBgNJGZV0KjwKr/ijeZzaRmFRMe7Em+rgxFAV+v8rGDfn8Jp2vbIH5JySNPV2o1OD32FgoBwK4fL5OWo6NlI1/CQzyZOrSDTEct6pXNQeUHH3xQioFocLQatc3TRhq1mgBvV8xmBWcnNR5uv//9pFKp8PZwpUUjH3w8XDh7OR+D0WRZr7qMJrPlLn5FgSBvd5qGeuHv5Yp7FUcFjjaOJRqOmt9gIMRtKiOnmIJiPRczdKhUqipv3vruWCp5haVcySkiv7iMrT8ks2zjcXIKSgFIzSoiOa0AlUpFsJ87RaUG3v78Rw6fzmT/iTSMJjPfHL3E+dQ8jKaKU6Zc+4W+99gVFq45xJJ1RwDoc3dj+nUJR61S4aTVVDpobVYUth5I5udk6Xssap/czij+NLw9nDHpy6/cuZkWjbxxd3MClQoVEOTjRlGwgSA/dwB8PJwxXXdxnr+3G7PHdyHEz52iEgNajZo7w/1ITi8k2N8DrUaN0WRGq1FTVGIgM7+YRoGe/PhbJr6ezrSL8LN6/8Abrmq6nlqlYmC3ZqhtfAYhboXNI4S33367wrLXXnutLrIIUadcXbRoNeoqT8VcExboibNWg6+nCz6eLnS7M5QH+7S2NJLxcHPC293Zap1Qfw9UKhWeV5c3Dvbi3o6N8HB1orBYz+FfMwDY/sMFsvPKKNWbmDa8E9OH38WAyBY1+hxarVoKgqgTVR4hvPPOOxQUFJCYmIhOp7MsNxgM7N27lzlz5tRLQCHqQm5BKVqtGq8bfrFfL19XBoCbi5ZfL+ZyZzN/tBo1BcV6zCbFMsAMkJxWQHZ+CR0iAtFqVby/6Wf63N2IO5v5U1hcxqWMAhoHeaBWl7/ntYKSV1hGdpEebxcNTlpNpTmuZ1YUzl8pwNvDmSAfN8xmBb3RhKuzHOyLP67Kn6LOnTtz/Phx1Gq11cymGo2GRYsW1Uc2IeqMu6uTzb+yr40xaLVqwgLc0Vx9vZuzhuvHdS9l6nBz0dAq3A8XZw2KotAhwp/k9AK27E/GYIL8glJ6tG/EsN4RFd7D3dMFQ5mhWrnVKhVBPm6W8YUyg4mCYr0UBFErqvwpio6OJjo6mqioKDp16nRLG09ISOC9997DaDTy6KOPMnbsWPbt28fChQspKytj0KBBPPvssxXWS01NZcaMGWRnZxMREcGiRYvw8PAgOTmZOXPmkJ+fj6+vL6+++mqFKayLioqYNWsW586dA8rvo7j//vuB8p7Kn332GYqi8NxzzzFgwIBb+lzi9peaVUST4JtfPXftPoQCXRl5Oj2BPu6W5WoUTCYTKpWKc6l5eLk70Sb89zuIi0r1HPwlAyctBPi48/zozphuuDrocpYONSqc3Jypzgmg3IJSnJw0qFVw7RYJNxetzGwqao3NMYTQ0FAmTZrEwIEDyc7OZsKECWRkZNjc8LWeymvXrmXjxo18+umnnDlzhlmzZrF8+XISExM5ceIEu3fvrrDutZ7K27Zto0OHDixfvhyAmTNnMnz4cBISEnjuued45plnKqz7wQcf0KhRIxISEvj4449ZuHAhWVlZVj2V165dy5tvvkleXp7tb0g0SIVFetJziy2PK5vBpajEQFGJgRK9iaO/ZlKqN1qWZ+YVs/PQJbZ9f4Ewfw/MCmTll5JXWMrBUxkc/y2L1uG+PBHbkUmxHTArWK5SuibEzx2D2URKWn6lVyPdyM1Vi0aj4tvjl/k52XYbWyFqymZBePXVV7nvvvtwcXHB29ubtm3bVmv8wF49lbt162bp5RAQEICvry9ZWVnSU1lYCfR3tTrNkpxWSJnBZPUalVqFSq3Cz8uF7IJS0rKLADCYzKjVagZ2b0aXNsH4+7iiAJczCvnm6GUCvFwwKio6tAiwXDGkKGZKy6y3bzKZ0RvMV48ObB8juDprKS4z8tvlfM5cyvsDn16IytksCJcvX+bBBx9ErVbj5OTEjBkzuHLlis0N26un8r333muZpjsxMRG9Xk/Lli2lp7KwYtCb0Ot//wUdEeaNi5P1oK6rkwZXZw1atRqj2Yz+2o1nGhUatRqDycTZ1Dzivz3H1n3JGFVm7mkdjKuLBietit8u5lFQrAcgLbuYQ79aH1l/e+wKn33zG57uLmg01gXBaDJXftSgKJTpTZQYZMZhUftsnnxUqVRW/Yh1Ol2l/YlvZK+eytds3bqVBQsW8OGHH6LVaqWncj1zxEzwey6zRk12QWm1c/a+uwl6RUVQkBdBQV4s/fQov5zPRKNR07yxL7MeiyT0ak+Df767G5NJYUT/1vh6uqFWq0gvKEVvtv5eRvZvw8CeEfhXct/BxYwCNn59hocHtbOabdXPz4MBPZoT4udRL9+xo+9HR+KImWrKZkEYMGAAzz//PIWFhXzyySd8/vnnDBo0yOaG7dFT+ZrVq1ezcuVKVq5cSZs2bSx5pKdy/XDETGCdSw0EeThbHheVGjAYzFaXkl5IL3+uaYgXHZv5cy41n0PHL/Llt+fx83TGzcUJdzcNY/q0RKOYycws5HxqAY39PdGoVZjKTGSXlV+y7evmRHSnsArfy7krBbRq5o+h1GB11ZOTWSE82J3cnCLOXcjF002Ll7szLk4aOjUPAKjz7/h22I+OwhEz1UmDnClTphAVFUXHjh3Zt28fo0eP5u9//7vNDdujpzLAzp07+fjjj1m3bp2lGADSU1nclJNGjYuz9SmjAB9XyxjA8bNZfHfiCp9+cxZXZw33dWnKi4904bFB7XG+7v6BID83xtzXiqjOYVbbcnHSEOrvXuF9w4M80BvNVs10ADQaNfd2bIKPpwvNQ71wddZaLntNTs8jM6+kVj63ENerdoOcW5GQkMD7779v6an8xBNPsH//fstlp9HR0cycOROVSmXVU/ny5cu8+OKLZGdnW3oq+/j4kJKSwgsvvEBhYaGlp3JISIhVT+W4uDhycnIICAiw5Hjttdfo2LEjq1atYv369RiNRqZOncqwYcNq9HnkCKF6HDETgFGlRldQwq+Xcgnxc8fX0wXfq7OJ5hSWojeYCPBx5eivmXRuGcSplBy8PJzYcegiF9N1+Hu5EtM9HA83Jy5m6OjRLpTE71PofEcgZXojarWKXy7k0bqJLys3/8wrj3XF0638BrQyvYnU7CIiwn7vnVBcamTB6h8Y0D2CqE5hlWa+UXJaAR8mnMTD3ZmZY/9S+1/SdRx1PzpiLkfMdCtHCDYLQvv27Sucf3d1daV169YsWLCAO+64o+ZJb1NSEKrHETMB+Pp5kJOtIyU9nxA/D6spLPJ0pZSWmQjwdSU5NZ/mYb6cvpjDf7edJtDXhcYBHjzcvw2KAmm5RYT6e1imsoDyI4j2LQIwGs04adXkFZbhV0WDnett++E8994VjlcNbizLyCvG1VlbYfqM2uao+9ERczlipjrpmDZ+/Hg8PDwYN24carWazz//nHPnzhEdHc2//vUvVq9efcuBhahPTlfnAIoI8+X8lQKah2otFyz4errC1X87FzKKSM8rIyzAjQeiWuDr4YRKo0KlUmE0mSnU6Qn2dUd93ZVBQX7lp5auNcqpTjEACPJyL58+w2j7Qo1rgn0rnnoSojbYHEP4/vvvmTZtGj4+Pnh5efH4449z6tQp+vfvT0FBQX1kFKLWNQr0qHA1W66ulBNnszh7uQCtRk2wrzuR7UPx9nDB5eo4gZNWTZurcxpd78Yjhury9nLG2UnuNBaOweZPYklJidU1/BkZGZSVlU/6ZTKZbraqEA7r+nsOvtzzG+4uToSHeOLupuWJ2HZWxUKtVuPnqeXI6UzubOZXq1NFtGrih4+nC5kl+lrbphC3yuZP9hNPPMEDDzxAr169UBSFffv2MXPmTN59913uueee+sgoRJ0o0xs5m5rPkd+yaNXYh4Hdm1X6urCA8lM0rdRqXG+4EkmIhsRmQYiKiqJz5858++23aLVannzySZo3b86lS5cIDQ2tj4xC1ApdiQGDsXx20KISA2UGE+4uWuY80gWXSgZ1rzW1AbiYriMs0L3Caab8Ij1Go8nq5jGjyUzKlUICfV3x8XQhp6AUFyc1eTo9jYNu/eZGo8lMbmEpuQVleHs6E+ovrW1F7bJZEB555BG2bdtW4Wqiym4IE8KRvfLBPgK9nfnxTDYjolsQ2T4M1ypO/5SUGcnKLyU82JM9x1Lp1ja4wrgBgIerFkWx3oZWoybIz9VyJ7xGo8bZSVNpJ7Qzl/KqfSWISgXOWg1Ngj25nKkjxK9igRLij7BZEBo3bsyRI0e46667ajzVgxCOIKewlJ+Tc7m7dQAuWjVtwv3o3bnxTddxc9ESHlz+izrQ26XKfgOVFQkAb4/f73j28aj68tCWjX2s7lDOyCvG38u10u1q1Gp8rt43UY3JUYWoMZsF4ezZszz88MNotVqcnZ0tcw0dOXKkPvIJcctSs3Rk5Bbz8bbTRIR6MeyvLWkWVPPTLO2aB9h+0S26/i98o8lMem55QbClbTM/m68RoqZsFoQ1a9bURw4halW+roz3N/2MkxrG3deS9ncEEt7Yz+FuHrqeVqOmY0SgvWOIP7FqnTL6+eefKS4uRlHKu0RduHCBBx98sD7yCVFtZQYTahU4aTU4adWM7B1BWIgHgd51dyPX+bQCGgd4WG5I+yMURaG4zIiHa+Uz+ApR12wWhDlz5pCUlERZWRnBwcFcuHCBv/zlL1IQhMO5nFmIk1ZNeLA37q5OdGwVZHulP8BgNKPVqGqlGACYzAr5ujIpCMJubI4S79u3j6SkJPr3788HH3zARx99hKtr9W7LT0hIYPDgwQwYMMBy6mnfvn3ExsYyYMAAFi9eXOl6qampjB07lpiYGKZOnUpRUXmnquTkZB555BFiY2MZN24c58+fr7Cuoii88cYbxMTEMHjwYA4fPmx5btWqVcTExDBw4EB27NhRrc8gHF+eroyM3GIiwnxoUo9z0ms1KgK8Kl45dOvbU9Mo0DF7bog/B5sFISgoCHd3d1q0aMHp06fp3r17tTqN2aun8vbt2zl79iyJiYksW7aMmTNnYjQapadyA3P9JIM+Hs4E+rqhUqnq9TJMlUqFu6tMOyEaDpsFwcnJiYMHD3LHHXewZ88eCgsLKS4utrWa3Xoq7969m8GDB6NWq4mIiCAsLIyjR49KT+UGwqwonEvN41RKDoarLS1VKtUtzSMkhLBmsyDMmDGDTz75hOjoaE6dOkWPHj2Ii4uzuWF79VSuqney9FS+/ZnNCj/8nA6KilbhfjhpZRoJIWpTtXoq//vf/wbgs88+o7CwkOPHj9vcsL16Klf2vmq1Wnoq17PaynTjz83gQE80VdwMVp+5apvkqhlHzOWImWqqyoLw888/oygKL7zwAv/+978t/zCNRiP/+te/bA7K2quncmhoKBkZGZbHWVlZBAcHS0/lelRbmS5nFHL6ch7tmvkTUsm8PZX98VAfuWqb5KoZR8zliJlqtafyunXrmD59OhcvXmTatGlMnz6d6dOnM2PGDPr3729zw/bqqRwVFUVCQgImk4mUlBSSk5Pp2LGj9FS+jeQVlvDDqTTOpRXQoXlApcUA4HJmEcWlhnpOJ0TDZbOF5uLFi3n22WdvaeP26KmsKApvvvkme/bsAcqvTOrVqxeA9FSuJ7ea6bvjlzGZzHi4u+DhqqVtU3+HyFXXJFfNOGIuR8xUJz2Vxe+kIFRPTTOZFYXiUiOL1h2maag3o6LvwOu6yeHslau+SK6accRcjpipTnoqC1FXDEYzajWU6c3oSvQ899Bf8HDVyiWkQtiJFARR786l5nPkdCa9O4fh6uyEj4ez3OAlhAOQf4WizmXll/BLShbHfsuhtExPfrEJJ62GuHsjam0eICHEH2ezIOzcuZMFCxaQn5+PoijSD0HU2JqdpzAaTDhptBTpTXh7aHh65D1yY5kQDsZmQfi///s/XnzxRdq1ayft+kSNZeWX4O7iRK7ehNloxEmtwsVJK8VACAdksyB4e3szYMCA+sgiGojSMiOFJQa83Jxwddbg4qwhyMcNPy8XOrcMJMzfMe/4FuLPzmZB6Ny5M7t37yY6Oro+8ogG4P9t/ZnUDB1/f6Ajnm7OjB9wp70jCSGqwWZB2L17N//73/9wcnLCyclJxhBElU5fzCGnsIxR/VqTnaWzdxwhRA3ZLAgff/xxPcQQt6uCojKyC8qICPOmWag3TUPAz8sVo0wpIcRtp8qCsH//fiIjIzl58mSlzzdu3LjOQgnHZ7o6q+yxczkcOpXBM6M64+IkVzELcTur8l/wli1biIyMZPXq1RWeU6lUMtD8J7ZgzSGMejP3RzajV8cwerYPtXckIUQtqLIgvPbaawCVFoTqSkhI4L333sNoNPLoo48yduxY9u3bZ5ncbtCgQZVOnJeamsqMGTPIzs4mIiKCRYsW4eHhQX5+Ps8//zzp6ek4Ozszb9487ryz8gFLo9HI2LFjGT16NMOHDwfKJ7f77LPPUBSF5557ToraLXLRqFE7KzQJLr9aSK2Wy5GFaAhuvdOIDXXRU/mjjz6idevWbNq0iSeffJJXX321yvdftmwZycnJlsfSU/nWpeUU8f3J37vLPTfmHl4c27XKaamFELenOisIddFT2Ww2U1RUBEBJSQmurq4AVj2VAY4cOcKpU6fo06ePZZn0VK4Zg9HEudR8SsqM/HYpj5AAN3tHEkLUsTobBaysp/KKFSvo1KmT1bLreypfW6+qnsqPP/44o0ePplevXhQVFbFq1SoA+vXrR79+/QDQ6XQsXLiQ9957j0WLFlnl6dixo+Wx9FSunNFkLu9d/Es6n+86y7//fi89OzaSGUiF+BOoVkHYtm0bv/zyC1OmTCEpKYkhQ4bYXKcueirPmzePsWPHMn78eI4ePcqzzz7Lli1b8PD4/dTF3LlzmTx5MoGBgRXy3Eh6Klf0yY5fSUkv4JnRd3NfZHO83G+tL4Gj9peVXDUjuarPETPVlM2C8MEHH/Ddd9+RlpbG3/72N959911SUlL4+9//ftP16qKnclJSkmXc4O677yYgIICzZ89ajjp0Oh379+/n9OnTLF26lCtXrnDgwAG0Wq30VK6CyWwmr7CUb49dISu/jNF9W9KphR8F+SUAlBbp6z1TXZFcNSO5qs8RM9VqT+VrtmzZwooVK3Bzc8PPz4/PPvuMzZs329xwXfRUbtu2LTt37gQgOTmZjIwMq1/qnp6e7N27l/j4eOLj4+nbty9PPfUUcXFx0lO5Clcyi9j2/QVMJoUOLfzxcncmyEfGC4T4M7J5hKDVanF2drY89vb2tpzfv5mQkBCeffZZxo8fb+mp3LVrV15//XWmT59u6akcExMDYNVT+ZVXXuHFF1/kvffes/RUBnj99dd5+eWXWbFiBc7Ozrzxxht4eXlZ9VSuSqdOnYiLi2PkyJEYjUaeeuopQkJCbH6OhijlSj5arZrGQV4E+rkR060ZAb5SBIT4s7PZU3natGmMHDmSJUuW8Omnn7Jy5Up++ukn/vOf/9RXRofREE4ZfX30Et8cvoCPpxvPj7nbITLVF8lVM5Kr+hwxU530VH7ppZf45z//ya+//spdd91F586dra7eEbeX1o19KC0Lo3u7MHtHEUI4GJsFISQkhP/+97+UlJRgMpnw9HTMK21E1S6m6wj0dcXNRUuTYC+aBN/+V0MIIWqfzYKQmZnJl19+WeGu3n/+8591lUnUgkuZhfx36ynaRfgT2zMCrabO7kEUQjQQNgvC1KlTCQ0NJTw8vD7yiD/ol5RcnLQqzEaFxsEetGvuJ8VACFEtNguCwWDg3XffrY8s4g8wmcwkp+Xx1cFL3NnMj35dmtC6mZ+9YwkhbiM2C0L79u05ffo0rVu3ro884hadupiLyagweWg76UsghLglNn9z3HPPPQwbNoygoCCr+w+SkpLqNJiwbd3O01zK1PHMqM60bx5g7zhCiNuczYKwcuVKFi1aRNOmTesjj7DBbDazYc9Zut0ZQqCfGyq1Gietxt6xhBANgM2C4O3tzeDBg+sji7iJzNwS/t9Xv9IixIPfLuXTLMSL/n8Jd8gbYoQQtyebBaFHjx688cYbDBgwwGoKi/bt29dpMPE7g9HEr5dy0BUbuJBZzIuPdLF3JCFEA2SzICQkJACwfft2yzKVSiVjCPXgyOkM7mjsi6ebls53BNGrY2N7RxJCNGA2C8LXX399yxu3R0/loqIiZs2axblz5wCYMmUK999/P3D79FS+lKHjZHIO2w5eYPKQdrRtVj4LqRBC1KUqC8KKFSt44okneO211yp9fs6cOTfd8LWeyhs2bMDZ2ZkxY8bQrVs3Zs2axerVqwkLC2Py5Mns3r2b6Ohoq3Wv9VS+//77WbZsGcuXL2fGjBmWnsorVqzg66+/5tVXX2XdunVW637wwQc0atSIJUuWkJ2dzdChQ+nevTupqamWnso6nY7Ro0fTrVs3fH19q/lV1b1SvZH/bv2Fixk6urQNYtLVYiCEEPWhyltYvbzK57vx9fWt9D9b7NVTuVu3bowbNw6AgIAAfH19ycrKcuieynqjif0nUvnueCo5ujKG9opgSM8W3CnFQAhRj6o8Qvj0008ZM2YM06ZNu6UN26un8r333mvZfmJiInq9npYtW7J27VqH66lcWKzn2NksEr5Lpt/djejYKpB+f5HLe4UQ9lFlQbDRJsEme/VUvmbr1q0sWLCADz/8EK1W61A9leN3n+G7ny6QklbK8D4tuK97M4b3aYWL063dT+CIvVwdMRNIrpqSXNXniJlqqsqCUFZWxs8//1xlYbB12ak9eipfs3r1alauXMnKlStp06aNJY+9eypfztKx48hFtAroCg10aRNAl9bBeLs7U5BXfEvbdMT7EBwxE0iumpJc1eeImWq1Qc7FixeZPn16pQWhOped9uzZk6VLl5KTk4Obmxs7duxgzpw5fP7556SkpNCkSRM2b97MiBEjrNa7vqdybGxspT2Vhw4dWmlPZYCdO3fy8ccfs27dOsLCfm8CExUVxcsvv8xjjz1GSUkJBw4c4Omnn7b9DdWC3IIS9v2czomzWehKTbg4q3llYmSNj1CEEKIuVVkQWrZsycaNG295w/bqqfzOO+9QVlbGlClTLFlee+01u/VU/upwCnt/SsNoVgjxc2NU3xb4e3pIMRBCOJwqeyoPGzbsDxWEhqi6p4zMikKZ3siV7GIS9p3DxVnL/T2aEh7sU+uZHPFQ1REzgeSqKclVfY6YqVZPGXXpItMj3ApFUdh/Mp1vf7rMmL4tmT7iLtQ3DJILIYQjqrIg2LrxTFgzmxXUahUFxXqaBnvyaExbwgIqXv0khBCOSjqp/EGKorD32BWC/d1pEuiBj4cLPh4u9o4lhBA1JiObf0BWfgn//vRHvjuRhlatwsPNyd6RhBDilskRwi0wXx2HLy410LVtMN3vDMHVRb5KIcTtTX6L1ZCuWE9+sZ7GgZ40DfGmaYi3vSMJIUStkIJQQ57uznjKVNRCiAZIxhCEEEIAUhCEEEJcJQVBCCEEIAVBCCHEVVIQhBBCAHVcEBISEhg8eDADBgxgzZo1QHlrzdjYWAYMGMDixYsrXS81NZWxY8cSExPD1KlTLW0z8/PzeeKJJyyzlv7yyy8V1lUUhTfeeIOYmBgGDx7M4cOHLc+tWrWKmJgYBg4cyI4dO+rgEwshxO2rzgpCeno6ixcvZu3atWzcuJFPP/2UM2fOMGvWLJYvX05iYiInTpxg9+7dFdadO3cuDz/8MNu2baNDhw4sX74cgI8++ojWrVuzadMmnnzySUuznOtt376ds2fPkpiYyLJly5g5cyZGo5Fjx46xadMm4uPjWbt2LW+++SZ5eXl19fGFEOK2U2f3Iezbt48ePXrg6+sLwMCBA9m+fTvNmjUjPDwcgNjYWLZt20Z0dLSlH0JUVBQHDx5k2bJlAAwfPpxHHnmEGTNmYDabLUcLJSUluLq6Alj1Q9i9ezeDBw9GrVYTERFBWFgYR48e5fvvv6d///64uLjg4uJCt27d2LVrF8OGDav2Z1KrHXPWUkfM5YiZQHLVlOSqPkfLdCt56qwgZGRkEBQUZHkcHBzMihUrrNpdBgcHk56eDsD8+fMt63l6eqLVlkcLCgqyvObxxx9n9OjR9OrVi6KiIlatWgVAv3796Nevn2X969tyBgUFkZaWRkZGBh07dqywvCb8/Bxz9tLa6vVcmxwxE0iumpJc1eeImWqqzk4Zmc1mVNf1AbjWh+fGZaobegVUtuza43nz5jF27Fj27t3LqlWrePbZZy1HDDd7X7VajdlsrpBRupYJIcTv6uw3YmVN7ePi4iosu/6veQB/f38KCwsxmUwVXpOUlGTpwXz33XcTEBDA2bNnK7xvRkaG5XFWVhbBwcGV5rnxvYUQ4s+szgpCz5492b9/Pzk5OZSUlLBjxw66d+/O+fPnSUlJwWQysXnzZqKioqzWc3JyokuXLiQmJgKwceNGy2vatm3Lzp07AUhOTiYjI4OIiAir9aOiokhISMBkMpGSkkJycjIdO3YkKiqKHTt2UFJSQk5ODgcOHCAyMrKuPr4QQtx2quypXBsSEhJ4//33MRgMjBw5kieeeIL9+/ezcOFCysrKiI6OZubMmahUKsugcr9+/bh8+TIvvvgi2dnZhIWF8dZbb+Hj40NycjIvv/wyOTk5ODs78/zzz9OzZ0+rQWVFUXjzzTfZs2cPADNnzqRXr15A+WWn69evx2g0MnXq1BoNKAshRENXpwVBCCHE7UNGVYUQQgBSEIQQQlwlBUEIIQQgBUEIIcRVUhCEEEIAUhCEEEJcVWdzGd3OCgoK+Oabb0hPT0elUhEcHExkZKTd72yWXLd/LkfMJLkk1zVyhHCDr776ihEjRnDw4EGKi4vR6XT88MMPPPTQQyQkJEguydWgMkkuyWVFEVYGDhyoZGdnV1ienZ2txMTE2CFROclVM46YyxEzKYrkqqmGnEuOEG6gUqnw8vKqsNzDwwONRmOHROUkV804Yi5HzASSq6Yaci4ZQ7jBqFGjGD16NP379ycoKAiVSkVmZiY7duxg5MiRkktyNahMkktyXU/mMqrEsWPH2LNnDxkZGSiKQkhICFFRUVbNfezh+PHj7N69W3JVkyPuR0f9rhw1lyPuQ3Dc7+uP5pKCUAmz2cyRI0esRuo7deqEs7OzXXPl5OSQmZlJq1atrJr7nDx5kvbt29sxmbXNmzczZMgQe8dwyP0o+7BmHHEfQsPdj3LK6AZHjhxh5syZNGrUiMDAQBRFISsri5SUFBYsWGC3HgqJiYksXLgQX19f9Ho9S5cupXXr1gDMmTOHL7/80i65Nm7cWGHZO++8g9FoBLDbFOOOuB9lH9aMI+5DaNj7UQrCDV5++WXef/99mjdvbrU8JSWFadOm2e2ysv/85z/Ex8fj7+9PYmIiEyZM4KOPPqJly5bY8yDvk08+ITk5mT59+liWFRUV8f333wP2+2XiiPtR9mHNOOI+hIa9H6Ug3MBkMlX4AQQIDw+3686G8vaiAIMHD0alUjFp0iTWrVtXoQd1fVqzZg3vvvsup0+fZt68efj7+zNs2DAWLlxot0zguPtR9mH1Oeo+hIa7H6Ug3OCvf/0rU6ZMYfDgwVYj9QkJCRXafdanFi1a8OabbzJ+/HhCQ0MZNGgQWVlZjB07lrKyMrvl0mg0PP300xw5coSpU6cyefJku/6juMYR96Psw5pxxH0IDXs/yqByJbZv386uXbusRuqjo6OJiYmxW6bi4mI++OADunfvbnXudOfOnSxdupT4+Hi7ZbtGp9Px6quvcuDAAUsLU3tytP0o+7DmHG0fQsPej1IQRK0rKirCw8PD3jHEHyD7sGGo6X6UO5Wr8NJLL1VrWX27HXJd+wF0tFw3W1afHDHTjRlkH9p2O+Sq6X6UglCF60fqb7asvkmumnHEXI6YqaoMkqtqDTGXnDKqgslkIicnB7Vaja+vr13nKLme5BJC1BU5QrhBdnY2zz77LN26dWPUqFE88MADdO/enSlTppCamiq5bpNc4vZ36tQphg4dSvfu3Zk9ezY6nc7y3AMPPCC56iCXHCHcYNy4cYwcOZIhQ4ZY/so1mUxs2bKFTz75hLVr10qu2yDXzJkzb/q8Pa6xd8RM4Li5xowZwzPPPEObNm1YsmQJx44dY/Xq1Xh4eDBs2LBK78yVXH8slxwh3CA7O5uhQ4danfLQaDTExcVRUFAguW6TXPfccw/bt2+nc+fOdOvWrcJ/ksnxc5WWltKjRw/8/Pz417/+Rffu3Zk6dSoGg8FumRp6Lrkx7Qbh4eGsWLGCuLg4goKCAMjMzCQ+Pp7w8HDJdZvkGjVqFCkpKVy6dInnn3/ebjmu54iZwHFzeXp6smfPHnr37o1KpeKFF17gueeeY/r06ZSUlEiuushVw6Y8DV5BQYHy6quvKn379lU6dOigtG/fXunbt6/y6quvKnl5eZLrNsmlKIpSVlam7N27164ZbuSImRTFMXP99ttvykMPPaR8+eWXlmVGo1F57bXXlHbt2kmuOsglYwhCiNtOTk6OZT4hR3K755JTRjcoKSlh2bJlbN++nbS0NNRqNcHBwURFRfHMM89U2qJOcjlurm3btpGenu4QuRwxk6PnWr58OVu3bq00l7005FxyhHCDv//977Rv357hw4dbnRP/8ssvOXLkCCtWrJBct3GujRs3cvjwYbvkcsRMt2MuR/3ZahC56uBU1m1t0KBBVT53//3312MSa5KrZhwxlyNmUhTJVVMNOZdcdnoDf39/tm7ditlstixTFIUtW7bg5+cnuSRXg8okuSTX9eSU0Q2uXLnC3LlzOXjwIF5eXqhUKgoLC+nSpQsvv/wyjRo1klySq8FkklyS63pSEKpgNBrJzc3FbDYTEBCAVusY4++Sq2YcMZcjZgLJVVMNMZecMqrCt99+S1BQECEhIZYv9JtvvrFzKslVU46YyxEzgeSqqYaYSwpCFZKSkqq1rL5JrppxxFyOmKmqDJKrag0xl5wyEkIIAciNaZX69ttv2bZtW4UbrQYOHCi5JFeDyyS5JNc1coRwg2vTxsbFxREcHIyiKGRmZrJ582ZatmzJCy+8ILkkV4PJJLkkl5Wa3frQ8A0YMEAxmUwVlhuNRiUmJsYOicpJrppxxFyOmElRJFdNNeRcMqh8AxcXF9LS0iosT01NxdnZ2Q6JykmumnHEXI6YCSRXTTXkXDKGcIMXX3yRsWPH0rx5c4KCglCpVGRmZnL+/Hm7dY6SXA0jlyNmklyS63oyhlCJ3377jW3btpGQkABAXFwc3bt3p0uXLpJLcjW4TJJLcl0jBeEGa9eu5bPPPmPgwIEEBgYC5TMG7tixg7i4OB5//HHJJbkaTCbJJbms1OagRkMwYMAApbi4uMLy4uJiZeDAgXZIVE5y1Ywj5nLETIoiuWqqIeeSQeUbaLVajEZjheWlpaU4OTnZIVE5yVUzjpjLETOB5KqphpxLBpVvMGXKFIYNG0ZkZKRlYCYjI4MDBw7w7LPPSi7J1aAySS7JdT0ZQ6hEeno6+/fvJyMjA7PZTGhoKJGRkYSEhEguydXgMkkuyXWNFAQhhBCAzHYqhBDiKikIQgghACkIoha99tprDB06lKFDh9KhQwcGDhxoebx27Vo++OCDOnnf2bNns2/fvjrZtiNZsmQJGzdurLA8JyeHNm3a1Op76XQ6JkyYQGlpKRs2bGDy5MkVXjNu3Di2bdtWYfnSpUtp06YN69evt1peXFzM3XffXem2AH788UfGjRtHbGwsQ4YMYeLEiZw5c8aSZ+LEiZSWltbCpxNVkauMRK2ZM2eO5f/79u3LokWL6NixY52/7/z58+v8PRzB008/XW/vtWjRIkaNGoWrq+strd+oUSPi4+MZMWKEZdmOHTtwd3ev9PV6vZ7JkyezatUq2rdvD0B8fDxPPPEESUlJeHp6MmTIEJYsWWK32UT/DKQgiHqxdOlScnNzefnll+nbty9DhgzhwIED5OfnM3HiRI4cOcLJkyfRarW89957hISEkJ6ezquvvsqVK1cwGAzcf//9TJkypcK2x40bx9ixY+nQoQN/+9vfiI6O5qeffqKgoIAZM2bQv39/q9cbjUbmzZvHkSNHcHJyokmTJixcuBAPDw927tzJu+++i9lsxsPDg5kzZ9KpUyer/Dd+nnHjxuHj48O5c+d46KGHiImJ4ZVXXuHcuXOo1WrGjBnD+PHjKSwsZP78+Zw+fRqDwUBkZCT//Oc/rXreFhYWEh0dzfbt2wkKCgJg1KhRTJs2ja1bt9KqVSsmTJjAjh07WLx4MW5ubnTo0MHq833++eesW7cOs9mMr68vL730EnfccQeFhYXMnTuXU6dOoVKp6N27N//4xz8q9Ny9cuUK33zzjVWBt2XJkiXA70Wrd+/e7Ny5k7S0NEJDQwH48ssviYuL49y5cwAcP36cOXPmEB8fT0lJCYWFhRQXF1u2GRcXh6enJyaTCY1Gw6BBg1i0aBETJkyw3IkrapecMhJ2UVZWxmeffcbTTz/Nyy+/zKOPPsqmTZsICwvjyy+/BGDGjBmMGDGCDRs28MUXX7Bv3z4SExNvut2LFy/Sq1cvvvjiC5577jkWLFhQ4TU//vgjP/zwA5s2bWLDhg2Eh4fz66+/cvbsWV555RWWLl3Kpk2beOqpp3jyySfR6XQ2P4+3tzeJiYmMGzeOuXPn0rx5c7Zt28ann37KZ599RkpKCgsWLKB9+/Zs2LCBjRs3kpuby0cffWS1HS8vL/r378+mTZsAOHv2LFlZWfTu3dvymqysLGbNmsXSpUvZsGEDjRs3tjz3ww8/sHHjRtasWcPGjRuZOHEi06ZNA8pP6fn6+pKQkMD69ev59ddfWbVqVYXPkpSURGRkpFWhOHTokOX037X/Tpw4YXn+6aeftjqC0Wq1DBo0yPI5UlNTKSoqolWrVpbXdOzYkfj4eAB8fHyYMWMGEydOpF+/fsyYMYP169fTs2dPy0ydLi4udOjQgd27d9vcH+LWyBGCsIsBAwYAEB4eTmBgIG3btgWgadOm5OfnU1xczMGDB8nPz7f89VlcXMypU6cYPHhwldt1cnIiOjoagHbt2pGXl1fhNa1bt0aj0TBq1Ch69erFwIED6dSpE2vWrKFHjx6Eh4cDEBkZib+/v9UvvqpcP3nYvn37mDFjBlD+C37z5s0A7Nq1i+PHj/PFF18AVHk+fNSoUcydO5cJEyawfv16RowYgVr9+99uhw8fpnXr1rRs2RKA0aNH89Zbb1neIyUlhTFjxlheX1BQQF5eHnv27GHdunWoVCqcnZ0ZM2YM//3vf5k0aZLV+587d46mTZtW+Hzvv/++1bJx48bd9DsZOnQos2fPZtKkScTHxzNs2LCbvv6xxx5j1KhRHDx4kIMHD7JixQpWrFjBF198gZeXFwBNmjTh/PnzN92OuHVSEIRdXD8/e2W31ZvNZhRF4ZNPPsHNzQ0oHzx1cXG56XadnJwsvzxVKlWlr/H29iY+Pp4jR45w4MABnnnmGSZMmIDZbK6wjqIoGI1GVCoV19+yYzAYrF53/blxrVZrtZ2LFy/i5+eH2WxmyZIl3HHHHUD5L+rKMnbp0gWj0cixY8fYvHkzn376aYXXXJ/l+r/kzWYzQ4cOtRQks9lMRkYGPj4+FT6f2WyudKoDlUqF2WyusLymOnXqhMlk4pdffiExMZHVq1fz9ddfV/raw4cPc/ToUSZOnEifPn3o06cP//jHPxgyZAjfffcdMTExQPn+1Wg0fzibqJycMhIOydPTk7vuustySqWgoICHHnqIpKSkP7ztb775hr/97W/cfffdTJ8+nWHDhnHixAkiIyPZu3cvFy9eBGD//v1cuXKFzp074+fnx8mTJ1EUBZ1OxzfffFPl9iMjIy1X2BQWFvLoo4+SnJxMr169+Pjjj1EUBb1ez9SpU/nf//5X6TZGjRrFvHnzaNOmDWFhYVbPde3ald9++41Tp04BsGHDBstzvXr1YsuWLWRkZACwbt06Hn30Uctz//vf/yzv/9lnn9GzZ88K7x0REWH5Dv6ooUOHsmDBAiIiIvD19a3ydf7+/rz33nscOnTIsiwzMxOdTkfr1q0tyy5dukREREStZBMVyRGCcFiLFi1i3rx5xMbGotfrGTJkCHFxcX94u1FRUezZs4chQ4bg7u6Oj48P8+bNo0mTJrzyyitMmzYNk8mEq6sr//nPf/Dy8iIuLo5vv/2WAQMGEBISQrdu3ajqJv+XX36Zf/3rX8TGxqIoCpMnT6ZDhw7Mnj2b+fPnExsbi8FgoGfPnkycOLHSbQwbNoy33nrLciroev7+/ixatIjnn38eJycnunbtanmuV69ePPHEEzz++OOoVCo8PT159913UalUzJkzh9dee83y/r179650kP6+++7jww8/tAzmVseNg8rXxMXF8fbbb7N8+fIK61w/qBwREcGyZctYvHgxaWlpuLi44OXlxYIFC2jRogVQfiXSjz/++Ke5qsweZOoKIUQFL730EpGRkTcdr6lvGzZs4MyZM3LZaR2SU0ZCiApmzJjB559/7jA3ghUVFbF582amT59u7ygNmhwhCCGEAOQIQQghxFVSEIQQQgBSEIQQQlwlBUEIIQQgBUEIIcRVUhCEEEIA8P8BWMOdu55Lg9MAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -1336,30 +135,26 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "INFO:root:Skipping copying from videos/Ploumen_CO_5.0s_to_10.0_at_15.0.mp4 because /var/folders/hy/qkxzx5jj0hvcj_l_lpvn81sc0000gp/T/Ploumen_CO_5.0s_to_10.0_at_15.0.mp4 already exists.\n", - "INFO:root:Loading indexed hashes from /var/folders/hy/qkxzx5jj0hvcj_l_lpvn81sc0000gp/T/Ploumen_CO_5.0s_to_10.0_at_15.0.mp4.index\n", - "INFO:root:Index /var/folders/hy/qkxzx5jj0hvcj_l_lpvn81sc0000gp/T/Ploumen_CO_5.0s_to_10.0_at_15.0.mp4.index has in total 751 frames\n" + "INFO:root:Skipping copying from videos/Ploumen_CO_5.0s_to_10.0_at_15.0.mp4 because /var/folders/w6/9kh8n81x3z9097k63m9r40h40000gp/T/Ploumen_CO_5.0s_to_10.0_at_15.0.mp4 already exists.\n", + "INFO:root:Loading indexed hashes from /var/folders/w6/9kh8n81x3z9097k63m9r40h40000gp/T/Ploumen_CO_5.0s_to_10.0_at_15.0.mp4.index\n", + "INFO:root:Index /var/folders/w6/9kh8n81x3z9097k63m9r40h40000gp/T/Ploumen_CO_5.0s_to_10.0_at_15.0.mp4.index has in total 751 frames\n", + "INFO:root:Skipping downloading from https://www.dropbox.com/s/4ognq8lshcujk43/Plenaire_zaal_20200923132426_Omtzigt.mp4?dl=1 because /var/folders/w6/9kh8n81x3z9097k63m9r40h40000gp/T/95fc56d68e602bc591942581d1c98114 already exists.\n", + "INFO:root:Loading indexed hashes from /var/folders/w6/9kh8n81x3z9097k63m9r40h40000gp/T/95fc56d68e602bc591942581d1c98114.index\n", + "INFO:root:Index /var/folders/w6/9kh8n81x3z9097k63m9r40h40000gp/T/95fc56d68e602bc591942581d1c98114.index has in total 7471 frames\n" ] }, { - "ename": "AttributeError", - "evalue": "'list' object has no attribute 'encode'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m/Users/ijanssen/videomatch/Matching Exploration.ipynb Cell 5\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 14\u001b[0m hash_vectors \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39marray([video_index\u001b[39m.\u001b[39mreconstruct(i) \u001b[39mfor\u001b[39;00m i \u001b[39min\u001b[39;00m \u001b[39mrange\u001b[39m(video_index\u001b[39m.\u001b[39mntotal)]) \u001b[39m# Retrieve original indices\u001b[39;00m\n\u001b[1;32m 16\u001b[0m \u001b[39m# Target video (long video)\u001b[39;00m\n\u001b[0;32m---> 17\u001b[0m target_indices \u001b[39m=\u001b[39m [index_hashes_for_video(x) \u001b[39mfor\u001b[39;00m x \u001b[39min\u001b[39;00m [target][\u001b[39m0\u001b[39m]]\n\u001b[1;32m 19\u001b[0m \u001b[39m# The results are returned as a triplet of 1D arrays \u001b[39;00m\n\u001b[1;32m 20\u001b[0m \u001b[39m# lims, D, I, where result for query i is in I[lims[i]:lims[i+1]] \u001b[39;00m\n\u001b[1;32m 21\u001b[0m \u001b[39m# (indices of neighbors), D[lims[i]:lims[i+1]] (distances).\u001b[39;00m\n\u001b[1;32m 22\u001b[0m lims, D, I \u001b[39m=\u001b[39m target_indices[\u001b[39m0\u001b[39m]\u001b[39m.\u001b[39mrange_search(hash_vectors, MIN_DISTANCE)\n", - "\u001b[1;32m/Users/ijanssen/videomatch/Matching Exploration.ipynb Cell 5\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 14\u001b[0m hash_vectors \u001b[39m=\u001b[39m np\u001b[39m.\u001b[39marray([video_index\u001b[39m.\u001b[39mreconstruct(i) \u001b[39mfor\u001b[39;00m i \u001b[39min\u001b[39;00m \u001b[39mrange\u001b[39m(video_index\u001b[39m.\u001b[39mntotal)]) \u001b[39m# Retrieve original indices\u001b[39;00m\n\u001b[1;32m 16\u001b[0m \u001b[39m# Target video (long video)\u001b[39;00m\n\u001b[0;32m---> 17\u001b[0m target_indices \u001b[39m=\u001b[39m [index_hashes_for_video(x) \u001b[39mfor\u001b[39;00m x \u001b[39min\u001b[39;00m [target][\u001b[39m0\u001b[39m]]\n\u001b[1;32m 19\u001b[0m \u001b[39m# The results are returned as a triplet of 1D arrays \u001b[39;00m\n\u001b[1;32m 20\u001b[0m \u001b[39m# lims, D, I, where result for query i is in I[lims[i]:lims[i+1]] \u001b[39;00m\n\u001b[1;32m 21\u001b[0m \u001b[39m# (indices of neighbors), D[lims[i]:lims[i+1]] (distances).\u001b[39;00m\n\u001b[1;32m 22\u001b[0m lims, D, I \u001b[39m=\u001b[39m target_indices[\u001b[39m0\u001b[39m]\u001b[39m.\u001b[39mrange_search(hash_vectors, MIN_DISTANCE)\n", - "File \u001b[0;32m~/videomatch/app.py:81\u001b[0m, in \u001b[0;36mindex_hashes_for_video\u001b[0;34m(url, is_file)\u001b[0m\n\u001b[1;32m 79\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mindex_hashes_for_video\u001b[39m(url, is_file \u001b[39m=\u001b[39m \u001b[39mFalse\u001b[39;00m):\n\u001b[1;32m 80\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m is_file:\n\u001b[0;32m---> 81\u001b[0m filename \u001b[39m=\u001b[39m download_video_from_url(url)\n\u001b[1;32m 82\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 83\u001b[0m filename \u001b[39m=\u001b[39m url\n", - "File \u001b[0;32m~/videomatch/app.py:41\u001b[0m, in \u001b[0;36mdownload_video_from_url\u001b[0;34m(url)\u001b[0m\n\u001b[1;32m 39\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mdownload_video_from_url\u001b[39m(url):\n\u001b[1;32m 40\u001b[0m \u001b[39m\"\"\"Download video from url or return md5 hash as video name\"\"\"\u001b[39;00m\n\u001b[0;32m---> 41\u001b[0m filename \u001b[39m=\u001b[39m os\u001b[39m.\u001b[39mpath\u001b[39m.\u001b[39mjoin(video_directory, hashlib\u001b[39m.\u001b[39mmd5(url\u001b[39m.\u001b[39;49mencode())\u001b[39m.\u001b[39mhexdigest())\n\u001b[1;32m 42\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m os\u001b[39m.\u001b[39mpath\u001b[39m.\u001b[39mexists(filename):\n\u001b[1;32m 43\u001b[0m \u001b[39mwith\u001b[39;00m (urllib\u001b[39m.\u001b[39mrequest\u001b[39m.\u001b[39murlopen(url)) \u001b[39mas\u001b[39;00m f, \u001b[39mopen\u001b[39m(filename, \u001b[39m'\u001b[39m\u001b[39mwb\u001b[39m\u001b[39m'\u001b[39m) \u001b[39mas\u001b[39;00m fileout:\n", - "\u001b[0;31mAttributeError\u001b[0m: 'list' object has no attribute 'encode'" + "name": "stdout", + "output_type": "stream", + "text": [ + "https://www.dropbox.com/s/4ognq8lshcujk43/Plenaire_zaal_20200923132426_Omtzigt.mp4?dl=1\n" ] } ], @@ -1368,13 +163,14 @@ "\n", "# Url (short video) \n", "url = move_video_to_tempdir(\"videos\", \"Ploumen_CO_5.0s_to_10.0_at_15.0.mp4\")\n", - "# url = video_urls[1] # (0: Ploumen) (1: Bram) (2: Baudet) Short video which is a (maybe mixed up) subset of the soure video\n", + "#url = video_urls[2] # (0: Ploumen) (1: Bram) (2: Baudet) Short video which is a (maybe mixed up) subset of the soure video\n", "\n", "if url.endswith('dl=1'):\n", " IS_FILE = False\n", "elif url.endswith('.mp4'):\n", " IS_FILE = True\n", "\n", + "#print(IS_FILE)\n", "video_index = index_hashes_for_video(url, is_file = IS_FILE)\n", "video_index.make_direct_map() # Make sure the index is indexable\n", "hash_vectors = np.array([video_index.reconstruct(i) for i in range(video_index.ntotal)]) # Retrieve original indices\n", @@ -1390,21 +186,21 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "WARNING:py.warnings:/usr/local/lib/python3.9/site-packages/seaborn/relational.py:654: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n", + "WARNING:py.warnings:/Users/pshouche/opt/anaconda3/lib/python3.9/site-packages/seaborn/relational.py:654: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n", " kws[\"alpha\"] = 1 if self.alpha == \"auto\" else self.alpha\n", "\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABe0ElEQVR4nO3dd3hUZfr/8ff0nt4bhN6bCIJAVKQpAVRY2WVxXUXFXdHFlbWhq9hdVlQsu/Jd1v252KVL07iACggC0mtIAqRnJslkeju/PyKjIR1TBnhe1+V1mZk553xmTsg95zznPLdMkiQJQRAE4bInb+8AgiAIQmgQBUEQBEEAREEQBEEQfiQKgiAIggCIgiAIgiD8SBQEQRAEAWiDgrBmzRpuuOEGxowZw7JlywDYtm0bmZmZjB07lkWLFjW4/GuvvcbixYtrPPbtt9/yu9/9rt5lli5dyvjx4xk3bhybNm1qMIsgCILwI6kVFRUVSddee61UXl4u2e12KTMzUzp+/LiUkZEhnT59WvJ6vdIdd9whbd68udayVqtVevTRR6V+/fpJr7/+uiRJkuT3+6V//etf0pAhQ6Tf/va3dW5z37590uTJkyWXyyWVlZVJo0ePlsrLy+vMcuLEidZ8+4IgCBeVVj1C2LZtG1dddRURERHo9XrGjRvHxo0b6dChA6mpqSiVSjIzM9mwYQMAjz/+OFlZWQBkZWXRsWNHfv/73wfXl52dTXZ2Ns8880yN7Rw4cIC77roLgK1btzJmzBg0Gg3R0dEMGTKEzZs315nl3HYFQRCEVj5lVFJSQmxsbPDnuLg4Vq9eXeux4uJiAJ577jlGjx4NwJQpU7j77rtRKBTB13bt2pXnnnuO8PDwGtvp27cvS5YsCW4zLi4u+FxsbCxFRUV1Zjm3XUEQBKGVC4JUx6wYMpmsSY+15DblcnmTswiCIFyulK258vj4eL7//vvgzyUlJWRmZtZ67Off6Ftim6WlpcGfS0tLSU9PR5KkX7zd8nI7gUBoTf0UHW3EbLa1d4xaQjFXKGYCkau5RK6mkctlREYamrVMqxaE4cOHs3jxYiwWCzqdjk2bNjF//nw++eQT8vLySElJYe3atdxyyy0tts1Ro0bx5JNP8vvf/x6n08mOHTt44IEHAGplOX8sojGBgBRyBQEIyUwQmrlCMROIXM0lcrWOVj9CmDt3Lrfddhter5epU6dy5ZVX8uKLLzJnzhzcbjcZGRmMHz8eqB5Uvu6664LjCE114MABXn/9dZYsWUK/fv2YNGkSU6dOxefzcf/99xMfHw9QK0u/fv1a/D0LgiBcrGRSXSfXhTqZzbaQ+wYQG2uitLSqvWPUEoq5QjETiFzNJXI1jVwuIzra2LxlWimLIAiCcJERBUEQBEEAREEQBEEQfiQKgiAIggCIgiAIgiD8SBQEQRAEARAFQRAEQfiRKAiCIAgCIAqCIAiC8CNREARBEARAFARBEAThR61aEFq6n7LVauXuu+9mwoQJzJgxo8Y01+fz+XzceuutLF++vME8giAIQrUmFQSPx0NOTg6nT5/G6/U2acXFxcUsWrSI999/n1WrVvHRRx9x4sQJHnvsMd566y3WrVvHwYMH2bJlS61lq6qqeOyxx1i6dGmNx1999VUGDx7M+vXrmTZtGs8991y923/zzTfJzc1tMM/Jkyeb9F4EQRAuBw0WhKNHj3LfffcxZMgQZs6cya233srQoUP585//zPHjxxtccUv3UwbYvHkzmZmZAEycOJGtW7fi9XrJysri8ccfD75u9+7dHDt2jGuvvbbBPKKnsiAIwk/q7Yfw5ptvsnv3bqZOncpLL72EwVDdecdms/HNN9/w3HPPceWVV3LffffVuXxdPYzP9Sv4+WM/76d8zpQpUwBqnC46f51KpRKj0YjFYmH06NHBHgo2m40XX3yRt99+m4ULFzaYZ//+/Q18NIIgCJeXegtCjx49+OMf/1jrcaPRyPjx4xk/fjxffvllvStuq37KcnnNg5ynn36a2bNnExMTc0F5GtLcucXbSmysqb0j1CkUc4ViJhC5mivUcuUUVLAl6zhR4WocrgCVNjdD+yTSJSWiyes4eLKE7IJKPF6JYX0SSYlv+/dYb0FoStey66+/vt7nWqOfclxcHGVlZSQkJODz+bDZbERERASft9lsbN++nePHj/P6669TWFjIjh07UCqVdeZpbk9l0SCn6UIxVyhmApGruUIx18rN2ZSUO4kwacgrrESnUVJstvOb67uhkNf/xdPt9SNJEj+cMpNXWMWWH/JBguO5Zm6/oSdqpeKCM7Vogxyv18uiRYs4cOAAAH//+98ZNGgQM2fOxGw2N7ri4cOHs337diwWC06nk02bNjF06FBycnLIy8vD7/ezdu1aRo0a1eSwGRkZrFy5EoB169YxePBgVCpV8Hmj0cg333zDqlWrWLVqFddddx33338/kyZNqjNPc7YtCIJQn3MnKhQyKXjWQqtWUN9JiPIqN/uyzXy15wwrv8nhTLGNSrsbj8ePy+PHbHXja4cvn/UeIbzyyivk5ORw66238v333/P++++zZMkSTp06xYsvvsjf/va3BlfcGv2UH3jgAR555BFuvPFGTCZTcIwgKyuLr776qsGrjurKI3oqC4LQEq4ZmMyJfCtGjZKB3WKx2r307hiJvI6K4HD7+PrAWaocfpweH1UOL4nReuRyOf26xOL1+RnaOx69ulVb3tep3p7KmZmZfPbZZ6jVal566SUsFgsvvfQSAOPHj78sr9ARp4yaLhRzhWImELma62LNlVtcxZHT5Ri0SqocXnIKrJj0Ks4U20hPNKLTqZEkieRYI0O6x9VZTJrjQk4Z1VuCFAoFarUagL179zJt2rQazwmCIAiNO2u2UWnz8N3hEiptbnp1jMTt8eEPBKh0eImP1IFMToc4IwO7xiCXtd8EEg0ek3g8HpxOJwcPHgyenqmsrCQQCLRJOEEQhIuRzx+g3ObmWH4lSrkcuRxKKxwo5XJKyx2kxBmwO7VoNXLSE8PonhKJXqts12IADRSEiRMncttttxEIBBg6dCgpKSns3buXV155JXhzmCAIglBTmdXF0bxy8svsRIbrMGjA4faTFh9GeZWLCruXCKeP4X3jCTOoiTHpfvHl9y2l3oIwa9YsUlJSKC0t5aabbgKq7wAeOnQos2fPbrOAgiAIoczt9bP3ZCnu/QWolHLOltjQqJVU2j2EmzSUlXtITQzD7vCi1xrxeAMkxBjonBjR3tFrafCU0bkrgM6ZNWtWq4YRBEG42Bw7U05eURXJsSayz1rRaOSUVTiJi9Tx9d58xgxNpdRsp2tqOG6vRLRJQ0qModZ63B4f3x4uprDUTv8u0fRJj27z99LoCavzp4+o7zFBEITLjdcfoMLhQa1WYnV48BPgTFEVJoMKJBjRPxlzpZv05Ah6pkbSPz2qzmIAkFNiY+ehIs6UVLF1XwEOt6+N300jRwhQ95QP9VypKgiCcFmQySRcHj8HcsvJKahCo1Jg0KpIjjFis3vJL7HTIy2CrqlhGDQq4iN0NPZn06BVYtCqsLu8hBs1qBRtP8DcaEG4//77m/SYIAjCpS7fYifr+7OUVrgw6VQkxRhQK+QgQXGZjYQYAxq1EpNehtsXoFO8qdZ8a/VJiTYweUQ6ZpubTokmVMoQKgibNm1qcMGxY8e2eBhBEIRQZK5yUW5z8d3hUo7kllNa7sCoV+PyeOnfJZacQis6tQKTQc3AbjFIAYleHSKbXAygerLNtHgTae0wqd059RaE+++/n5iYGDp16lTrFJFMJhMFQRCEy8LJwgr2nbCgVstxuHxY7R5iInSUlDsJN2ro2SGCUf0SiY01UVZma++4v0i9BeGFF15g5cqVOBwOpkyZQmZmJmFhYW2ZTRAEod24fT72njSTW1CFxepCqZSRGFM9FYTT7aNrajjXDkwhLkIP/PKp/ENBvQXhpptu4qabbqKgoIBVq1YxY8YMOnXqxM0338zIkSObdSgkCIJwsTBb3Ww/XERFlYuyShcRRg1RYRqOny1Hr1Fyc0YnkMvokRZJcpS+veO2qEb/qiclJXHvvfeyZs0abr/9dv71r3+RkZHRpJXX1dR+27ZtZGZmMnbsWBYtWtTg8q+99lqNS1ytVit33303EyZMYMaMGZSWltZaxm6388ADD5CZmUlmZiaff/558LmlS5cyfvx4xo0b1+gYiSAIl5dDuRbWf5fH+u/yOHmmApvLh8vtw+byEggE6JseTWqCiRF9Ehk9IPmSKwbQhKuMAMrKyli7di2rVq3C5XIxY8aMRpc519R++fLlqNVqpk+fzpAhQ3jsscd47733SExM5J577mHLli21CkxVVRUvvPACn3/+eY2b4V599VUGDx7MO++8w8qVK3nuued49dVXayz7zjvvkJSUxGuvvYbZbGby5MkMHTqUgoICVq9ezapVq7DZbNx6660MGTKkRoMdQRAuLwFJQiGXse9UGVnf52O1ezDqVOh1KsyVTqLDtcSGaenTKYYuKWEo2nmuodZWb0E410Rm9erVHD16lPHjx/P00083uYfAz5vaA4wbN46NGzfSoUMHUlNTgeoptjds2EBGRkaNfghZWVl07NiR3//+9zXWuXnz5uCRxsSJE1mwYAFer5etW7cG+yEMGTKE9PR0AKKjo4mIiKCsrIytW7cyZswYNBoNGo2GIUOGsHnz5mD/ZkEQLg+BgMTRs+UUlTuQSdX9CWzO6sFijzdATKKOU/kVpMSZiDCquf6KVMKNmvaO3SbqLQjDhw8nMjKSSZMmMWfOnGBnskOHDgHQu3fvBldcV1P7JUuW1CgocXFxFBcXA9RobnPuj/T5d0T/fJ1KpRKj0YjFYmH06NHBxjpXX3118PXr1q3D4/HQpUsX3n//ffr27Rt8LjY2lqKiogbfw/lET+XmCcVcoZgJRK7makqu/SdKMFtddE2NQKlQkJNfQQCJgM/PDyfNJMcY8Pv9nC6yEWbQEBGmwecJ4HR5GT+sI7GRerqmRhIToWvRXKGs3oIQGRkJwOrVq1mzZk2NS09lMhlZWVkNrripTe1/6ch8fYPb69ev5/nnn+f//u//UCqVdeZp7sC4aJDTdKGYKxQzgcjVXPXlcnm9fH+0GKvTR1yEgX3HS+iYHI7b463+GxCQsFjddEgwolEp8PgDhBtUOF0+3F4/ybFGFAo5nZNM9OkYjUIuQ/L6mvwZhNrn1aINcr766qtfFKaupvaZmZm/qNF9XFwcZWVlJCQk4PP5sNlsdY4BvPfee/zrX//iX//6F927dw/m+fkgdGlpafDUkiAIF78fTpopt3vp2TGS7w6W0j0tgrxiO9HhWnRqBYFAgPxiK3ERGhQKCNepcLr8pCWGcabYSoXVxdghaXRoxxvD2lujX5HPnSJq7LHz1dXUfujQoeTk5JCXl4ff72ft2rXNanSfkZHBypUrgerTQYMHDw6eyjrnyy+/5N133+WDDz4IFgOAUaNGsWnTJpxOJxaLhR07djBs2LAmb1sQhNCmkMkI+GVEGrUoFHLCTRqiI7QYNEo0ahWxEXo6JYdzJLec+EgDXp+PgEwiPkpLv86xjBqYfFkXA2jCVUaPP/548I9wQ4+dr66m9ldeeSUvvvgic+bMwe12k5GREZxi++eDyvV54IEHeOSRR7jxxhsxmUzBLm5ZWVnBQeXXX38dt9tdo2fDs88+S79+/Zg0aRJTp07F5/Nx//33Ex8f39jbFwQhBBVY7FTafbjcXqLDtShkMuRKGfHRWpxuL907hCNTgsvjRy6Xo5BJuD1eDAYlmGUUW+ykJYSTZFQSadJi0qpQiHurkEli6tImE2MITReKuUIxE4hczXHkrIVyqxePz8/poirkchkalZyEGCPygB/kcmIitNgcPkoqnGiUChJidGjVSpAk3N4AOw4WotOpcft89EiOZGjPlvliGGqf14WMIYiSKAjCReFUoRW3J4Dd5cXt9nMw20zHhDA6Jobj9frQ6jQo5DLkMjlWhweTToVaJcPrC+DxSnh9EvmlVtweie37CzFbXChUF/90Ey2p3lNGAwcOrPMKIEmSkMlk7Nmzp1WDCYIg/Fy53Y3L7UejUiBTy7jlus5oVQpyi2xoNApcbh86tZzs/AriowxoVDKKLU7UcgUKOXh9AdQqNclxBmIjtJgMarokhrf32wop9RaEtWvXAtUF4J577uGdd95ps1CCIAjnUyuVWKxuEiI16LUqDIbq+wbOljrQKBVEhmtQUn2jmdvlx+uRcHl8WKocmIwqZECESYVeowK5hE6lIMJwedxw1lT1FoTk5OTg/6vV6ho/C4IgtDW1SkaX5HDcXh8+SY4UkFCq5CRE6VAo5DidXiJMSsxWNwG/RGqcgbREE/uOmzm7r4pBPWLpkGAi0qjCpFMSYdC291sKOWIMQRCEkCZJEqVWF0o5KBVyTAY1DpcXc4Wd42cq0apVaFQyJCTcrgBKmQyfXyLf4sDp8lFkdnAi38pHWdkcP2slNcYoikE9mjS5nSAIQnuQJIkdh4vJzq+kV3okkUY5BGQYNEoq7W6SonRYHR7c3gAer4+yChcBCSSAAFgq3XTvGIXT7cOoU5OeeHnfZ9CYJrXQrKqqqjVdtOiYJghCa/L5A+SV2CiqcJJdYCUyQkulw0dSTPXcQgadkrwiKx5/gEiTBofLi0Gr5nhpOVqlCofLS0J0FD3TIkiK0mHQKemSFNG+byrE1VsQ3nvvveD/JyYm1vhZtNAUBKE1SZLEnhNl2F1epICEQafim70FjB2WxumiKmLDdRgNKuKiDFRUubBUulCrFViq3PTpFEOV3UtijJ7eaZHIZDIGdoltfKNC0wqCIAhCa8sprmLXkWK0GiUj+iZSYnEgSRIRJg1x4VrkMsg+W8lvxvTAqFHUuElULpcBMiRJqnMiS6Fp6i0Ir776Kn/4wx9Qq9V1Pu92u3nrrbeYO3duq4UTBOHSZ3V4OHK6gmUbjmJz+QAoKLUx+ooUjuaVE6ZTMWVUJ3wBMOmUJCWE17ojuLo4iELwS9VbEAYNGsQtt9zCyJEjufbaa0lLSyMQCHDmzBm2bt3K5s2befDBB9syqyAIlxCrw01RuZMVW3KIMKmDxQDgaF4Fsyb2plNiGHKZ7JJoYH8xqPey01GjRvHhhx8SERHBiy++yPjx48nMzOTll18mPDycDz/8kOuuu67BlbdHT2VJknjppZcYP348N9xwA7t37w4+J3oqC0Jo+GL3WT7dfIpjZyo5drqcgARJsYbg8yP6JaFSyFDI5aIYtKEGLzs1GAzcfffd3H333c1ecXv1VN64cSPZ2dmsW7eOvLw87r77btavX8/hw4dFT2VBCAH5ZgdrvsmhY2IYRr2K2AgdBaV2okwaOieHkxJnJKNvEmIooO212o1pP++prNfra/VUViqVwZ7KUD399bkubA31VM7MzASqeypv3boVr9dLVlYWjz/+OABbtmzhhhtuQC6Xk56eTlJSEnv37q3RUzk6OjrYU1kQhNbl9PjZebSEbQeL2H28FJvLi8vjQ69TcqqgglEDk+iTHkVKnIneHaMY2ScBtUrcM9seWu3GtPbqqXx+F7ZzvZNLSkpET+U2Foq5QjETXJq5HC4vW/ee5btDxeQWVlLl8BIdpmXskBQmDO/IlzvP0CHeQIRJw2039P7xSqHWz9WaQjVXU7VaQWivnsr19U4WPZXbVijmCsVMcOnlqv4nLWPZl8eRgO+PFBMbqUMKSBSU2SkotXPj1en0To9CIZeRHm/CbLa1eq7WFmq5WrSn8s/l5+ezc+dOfD4fQ4YMoUOHDo0u0149levqnRwXFyd6KgtCGzhdamPz3gLS4g3sPFxMl+QIEqMNFJrtpMQZ0WuVXNUnEZNWhSlJTD0dahr9ivz1119zyy238MUXX5CVlcXUqVP58ssvG11xe/VUHjVqFGvWrMHv95OXl0dubi59+/YVPZUFodVInCywsmnXaVZuzeHb/QXsOFRESpyRskonCTF6hvSKp0eHKGaO60HHy7xvcShr9Ajhtdde47///S9dunQB4MSJE8ybN4/rr7++weXaq6fy+PHj2b9/P5MmTQKqxya0Wq3oqSwIreTrA0UcybMQH1k9jUQgIHH8dCU3X9OZIosDjVJOj/Qoruwqpo8IdY32VJ48eTKrVq2q8VhmZiZr1qxp1WChSIwhNF0o5grFTHBx5nJ6/JRWOFEo5Py/9UfQaZVUVrnpkR7F4ZxyfL4AXVMjmDG2Cyq5os1ytadQy9UqYwharZYDBw4Er9A5cOAAOp3uwhIKgnDRq7C5+eh/2RzMLuP6oakoFHJSY01Y7V7M5Q5G9E8kTK+iX+eYFi8GQutqtCDMmzeP2bNnBweSc3JyeO2111o9mCAIoWn/KTOHTpmxu3zsPFhMxsBkDmSX0SMtgugILVd2jyNMX/ccaEJoa7QgDB48mM8//5x9+/YhSRL9+/cnMjKyLbIJghACApJEfpkdl8dHWpwJjUqByaDG5vRiqXLj8gb4w819CPhBr1GKqSYuYo1eZRQIBPjss8+CV/V8/PHH+P3+tsgmCEIIKDA72H20hEOnLBzJK2dQ1xiu6BlHx8Qw+neJYUiPWHQqFQatShSDi1yjRwgvv/wyFouFAwcOANWXoZaWljJ//vxWDycIQtuSAK8/gErx03dFny8Q/H+vP4BKqeDmq9PJvKoDSoUMGaIIXCoaLQjbt29nxYoV3HzzzRiNRpYuXcrkyZPbIpsgCG2oyunlk/9ls/tYCVf2jOfOyX0ASIk14HD7cLl9dE2NCL7+50VDuDQ0WhCUSmWNKR7UajVKZavNeCEIQjs4UVDO7mNmvtlfAMDWH/Lp3iGSYT3jUCrk9Oogxg0vB43+Ze/WrRvLli3D7/dz6tQp3n33XXr06NEW2QRBaGXF5U5OFFRwOKccjzdQ4zmXR4wVXm4aPeZ7/PHHOXToEGazmV//+tfY7XYee+yxtsgmCEIr8PoCFFkc7D5RymdbTlJmceDx+pGQiArTApAUY2Bo74R2Tiq0tUaPEIxGI88//3xbZBEEoZU53T4+yDqBpcpNhFFNpc1DVJiG1DgD+WUORvZPpEtKOGlxJjokhoXUnbdC66u3IDz66KMNLvjCCy+0eBhBEFqezx9gX3YZTo8fn18iO9+KTAYmnRqtVond5Sc+Qkf/oWl0iDcik4nB4stVvXu+a9eudO3alaqqKo4dO0b37t3p1asXubm5Tb4P4UJ7KhcUFDBjxgzGjx/Pvffei91uByA3N5ff/va3ZGZmMnPmTHJychrc/v3331+jyU5z+jkLwsXOF/Dz7aEi1n13mh+yzSzbcJTs/ErsLi9yuYzSCjsdEkyMHpTMNQNT6JgQJorBZa7evX/HHXdwxx13YDabWbZsGbfffjszZ87k3XffJS8vr9EVn+up/P7777Nq1So++ugjTpw4wWOPPcZbb73FunXrOHjwIFu2bKm17NNPP81vfvMbNmzYQJ8+fXjrrbeA6qOWm2++mTVr1vDnP/+ZP/3pT/Vu/9NPP+W7774L/uxyuZq0bUG4VOw4UorT7cVidVFktuPxS+QUWOnbORqr3UOYQcOQnvE/FgJxL4HQhEFls9mMWv3TvCQymYzy8vJGV3yhPZW9Xi+7du1i3LhxANx8883B1xw5ciQ4XfaAAQMoKSnhzJkzHDhwgLvuuiu47by8PFasWMH06dODj+3fv7/ebQvCpeJMmZ0vvj/NuxuPUlruxOHyEWZQEx2mJcygxuPzM7h7DM/ddRX3TulDSrShvSMLIaTRQeVhw4Yxa9YsJk6ciCRJrFq1iuuuu67RFV9oT+WSkhKMRmPwXofY2Njga3r16sXnn3/OtGnT2L59OxUVFZSWljJo0CCWLFkCgM/nY/78+Tz99NOsX7++wTzn1ttUoqdy84RirlDMBL88V5HZjt3hZs03Oei0Cr7+oZBp13XBYnUhA0w6FQO7xmDUq7miVxKRP15N1Nq5WovI1ToaLQhPPPEEy5Yt44svvkAmkzFhwoQa37zrc6E9lRta7sUXX+SZZ57hvffeY9SoUfTo0aNWx7TFixczZsyYYEOf5uZpiOiH0HShmCsUM8Evy+Xx+fnmQBHvbzrG5IzO+PwBpED1P+vNe/PJHJHOtv2FFFscdE4J57pBKfjcXkpLva2aqzWJXE3Tov0QbDYbRqMRm83G5MmTa0xXYbVaa/UyPt+F9lSOiorCZrPh9/tRKBTBnshQ/e3/zTffRK1WEwgE+Pjjj0lJSamx/MaNG1Gr1Xz22WeUlZUBoNPp6NevX/Dn+rYtCBeLKqeHk2crCMhkLNt0DEmCvEIrJr2aAAEyBiYhQ0Z6gpGregzA7vah1yjEdBNCg+otCDNnzmTFihVcddVVNb5JS5KETCbjyJEjDa54+PDhLF68GIvFgk6nY9OmTcyfP59PPvmEvLw8UlJSWLt2LbfcckuN5VQqFYMHD2bdunVkZmaycuXKYN/lRYsWccMNNzBhwgQ++eQT+vTpU2sq7p+PC5y7wmjWrFm43e5gP+f6ti1c+iodHpRyGTqNgkAAlE34A2m2uth3yoxOrWRg12i0qp/+2fgCAfwBCaVcxpkyB0fzyokK0xAfqSNcrybCqAGq/934AxIKueyCB3D9gQDZhVYkSeLrHwpJSwwjTK9GRvWkdD8cL2XkgCQ6xIejViro3zkak676CDpcr2pw3YIADRSEFStWAHD48OEacxk11S/pqfzXv/6VRx55hLfffpvExEReeeUVAB566CEefvhh3njjDeLj44P3Qhw4cIDXX389OI5QF41GU++2hcvDsVwLW/ecRa9VUmxx4vD4uG5QMl2TI+p8vdcfILfYysbvzlBR5cFidZJfZmfqqHRARk5RFRt25KHVKkiLC2PNtzn4/QG6d4ikwubGoFFy0zWdSYs18u3BQg5mm+mWFsW1AxORN/PyTkmS2HGkGEulC0kmp9LuwefzU2ip4sar0/l8Wy5yGXROCWdE78Rf/mEJl6VGeyqPGjWKqVOnMnXqVJKSktoqV0gSYwhNF4q5jp6t5GiOGV8gwHeHi9GqlPTpHM2t13ap+/VnKiiyONh1pIQjuRYAEqL1zL99MHqVks+357H+u1yG9EpApVTwxc7TRIdrSYrWU+X0ggSDe8YxvE8C/1x5kHO/OXfc2Iu4iJ/a0Dbls/r2UBFWhwerzYXDHeBMcRWDusehVskxVzhIijGh1Sq4oktsk456miIU9yGIXE11IWMIjf7m/Pvf/8bj8TB9+nTuvPNONmzYgM/nu+CQgtBe0hLDUKnkKBVyFHI5Tk/1JZn1kkCrVqDTKNFrqw+mk2MNqH/8gxsTqUWvUeH3+4k0aVDIZVisLuKjDBSU2oLX/2uUChJ+vLwzJlyHQdv4bMG+gJ+92WVs3H2ar/bls+rrU3g8fjQaFT5fgC4pEZRXuTBqVVzdP5nenaIY3DWuxYqBcHlq9AjhnEAgwNdff82bb77J2bNn2bZtW2tnCzniCKHpQjFXbKyJwqJK9p8yU1LuwO0LcGWPWJKi6v4W5fH5OVVgpdzu4UypjYBfYmCXGFJijRzIM2O2OAnIZKgUkBSjp7jczckzFaQlGDldZEOjktMpMYyMAclU2D0UlNlJiNITfd4ln+d/Vk6Pnx2HiyiyOHC4PNgcPqwOL2F6JalxRvQ6NTq1gr6dIoky6Vv18wq1fQgiV1O16FVGP2c2m1m9ejUrVqxAkiTuvffeCwooCO1NqZDTJz2KApMWvUZJXKSu3teqlQp6pFVftHBVz+or0mTI+P5EKSVmJ/tPllFstqPTKrn2ijQmDEllUNdYvt1fQGqcEYNOxZU945HJZEQaNUT+OMBcnwKznVNFVixVbjyeAH5/ALcnQLnVTZe0SM4UWfnhhJmbMjozsEtMy30ogvCjRgvC7Nmz2bNnD+PGjeOZZ56hf//+bZFLEFqNSiHH6fFzKMdMcqyRfp2jGhzk9fj87D5WisXqom/nGDzuAC63j3CTBrfXT6XNg91dfV2/0+UjEJAIBCTkyDBomtZM6vBpC3uOlXL8TAXd0qKIjdCSU1BJcqyRML0alULGrMk9iTHpRcNKodU0+tt63XXX8fe//x2DQdziLlzcJElCksDtC3Asr3qQOLfQSnpiGOF1jCVU2D3YnV6KKxzsOVGCXqPi+Nly4qMMRHl1uDw+Tp72kBpvQK2Qsf+UhbhILckxRqxOD4kxhuBl2k6PD7PVRaRRGxxDKKtysuNQCQVldmIjdFisHpRyOVIgQFm5kwHdYjhbYkOtUnDNwCRiTXr8/gC5JVXIZTI6xJuQizmIhBbUaEH41a9+1RY5BKFVOdw+Nu7Io8xiZ0CXGKLDtZgrXRj1KrRqRa3XV9jcbP2hgNhoHXmFVRzPq8Tp8REVns4X3+XRp3M0KfFhlFU6iQjT8t2hYg7lWPD7AwzsFkd+SRWni6soqXAwsEsMOw4XU2X3EGZQ0zk5HKvDy9lSG8s3Z2PQqRjRPwmvz0d0hA5LlQuFTE5CtIFhvRPokfrTvTbbDhWz5tscFHK4KaMzQ3rEt+XHKFziRHNk4bJQZHZgsbpwun3kFlcxtFc8FTYPYXoVGlXtgmB1ePD6A9icPs4UV48TGA1qKm1uvL4Ae46Vkp5o4qZRndm6vwCfP4C50oVaKafE4sDl9XP8bCXlVW5MehUFZXYijGqOnS5HpZJz4JSZSFP14LLd6aW8ykWn5AiKLXaqHH46JxtITzDSIeGnuXEkSeJ0SRUBSSLgh/xSO4hutkILEgVBuCyEGVScO7sSYdSgViqIi9BCHWfk/YEABWUO3F4/Lo+PlHgDZZUOnG4vSTF6TFolVU4fV/ZMoEO8ic5J4YTpNNjdHgpLHSTEGHAX+VEp5cRG6NifbUanUSKTgccfoMjipKDETre0KIw6FTanl73HSrlvWn/GXplCUZkDo15N/HkD3jKZjB5pkZSWO9Go5PTpHN0Gn5xwOWn0ouVXX3211mPPPvtsa2QRhFYTE65jzJAOXN0vkdQ4A9sOFrFp1xmKy521Xut0+zFXOvH5JWSShEoho2+naIb3TaBTQhj+gASy6m/scpmMwd3jOJhjJiffikaj4HRJFTanlyu6x5KeHM7Z4iryS20UW5yolQpOnq3gil7xFJvt3Hh1R66/MpXp13eld1o4Bo2KzsnhtYrBOQO7RHN1v0RS4kzQtCvGBaHJ6j1CeP3117Faraxbtw6bzRZ83Ov18tVXXzF//vw2CSgILSUmQofk9ZFTaKW0woEkQXZ+Za0/vjqNAr1OxYFTZsBIldODzxvAa/ajVak4mV8JwHdHiumcFEaZ1UWxxYFKKScyTMfeY6VMvbYzCoWCnPxKIsP1fH+kiP5dYigss5ESa0KvVpAaZ+SrXWfQ6VSYK5wM7BpLREM3ygFWp4/8kup/j4dzLHSIC0OtEjejCS2j3oLQv39/Dhw4gFwurzGzqUKhqNGWUhAuNn5J4lSBFX9AIi2h9o07Crmc/p2jyS+xoVLKUSo0HM0rR69TERelQ5Yjw6BTkhCl59vDxZwptBIbqUOvUaJQyJg0oiNajZL8Ejtev0RZuZ3kGAMFpXYGdIujZ4dIEiJ1HDhlRqdTUlRW3cpSV8dYxjkuj489J8rw+QLYnF4cbh/piWEo6l9EEJqt3oKQkZFBRkYGo0aNqtHUpjnWrFnD22+/jdfr5fbbb2fGjBls27aNF154AbfbzYQJE5g7d26t5QoKCpg3bx5ms5n09HQWLlyIwWAgNzeX+fPnU1lZSUREBAsWLCA9Pb3Gsn6/nwULFrB7924kSWLatGncfvvt9eYRLj95RVV4/QEkCQrKHAzsImGuciOXyYgyVd885g9IRIZp0KgUFJjt6LQqZIDV5iYxWo9CJSP7rBWrw0N+qY0hPeMJSBIGvRqDTkNlpZv4aD0lFicmgwbbjy0r9Wo53VIjyCmwgkxGhdWNVqOkvNKF1ekhVl33qaICswNzhROn109xuROjThVyd80LF79GjzUTEhK4++67GTduHGazmTvvvJOSkpJGV9xePZWXL19ORUUFq1ev5pNPPuHjjz/m0KFDdeY5efJkEz4iIVS5vX6yCyrJN9vrbIBUH79foqDUztkSGxarm9xiG9/sK2DrD/nkl9kBcLn95BVV4fYH8PoCuDx+qhxeqlw+yipcOOx+PD4/SbEGRl+RQmKMDovVjbnSRbHFTkmlC4VMIsKopn/naDRaJVV2D6dL7fh8fqLDtcgUMtzeAEVmOxV2N1Kg/swmnQqVonqia4fLS3ZBJTmFVkRNEFpSowVhwYIFXH/99Wg0GsLCwujRo0eTxg/aq6dy165due+++5DL5ej1elJTUyksLKwzj+ipfHE7lGvhQLaZXYeLKa6oPThcn4gwNb07R9M1NYKYSB2VNnfwueD/y6oHorUqJXqNCpWi+uokKRDAZFAyqHsMvTpFoVYqKLe5cbgCGPUqlHIZapWC1AQj+WXO6snuonUYtUrCjGoUMhlOT4Ajpyuw2dykxBlISwijQ0IYlQ43u46WcDjPwpkyK8cLKrA53Lh/PCpIijViMqiRy+VoVUqcHj9ev7+lP1bhMtZoQcjPz+dXv/oVcrkclUrFvHnzKCwsbHTFdfUwXr16db19jZ977jlGjx5NeXl5oz2VgRo9lfv27RvshTBgwAC6du0KwJ49e9i/fz9XXnlli/RUFkKL2/vTH0O3p+E/jP5AgCqHh4AkoZTLyTlbQXZ+JYdOmUmM1mPSq4kK15IaVz2mYNKp0KoUKBUykEkgk3G2tAqPL8AVvRKwuXyUV7mptHtwuH34AxJOj5+kWD2ni6r44WgZW/acJev7s5SWu5Ajw+P1EwhIaNUKyiqcKJQKsvOtHMsr50xJFbuPlZK1+wwHTpnZc6yM/6w9ysKP9rHzSDEnz1aQX2pDCkBJuZ2zpTaqHF7kDRxVCEJzNXofgkwmIxD46bfOZrPV+Lk+7dVT+ZydO3fy4IMPsnDhQsLDw1ukp3JzZw5sK6Ha2Lu1cw3rp+Bwjhm9VkW/rrGo6xmUdXv9fL33LCXlhXRJCadDchhxUQZc3uppq+NjTVS5/ZSWOwnIFcTGmjCYtETklFNhdREboeNYbkX11Ufa6kJxtNSOPxAgPkrP0VwL3nAfJr2asgonaQlhVNhd5JUoiA5X0SklgkE94zmVX0mHhHA6pUYwwOrm06xjXNkjjgKLne5pUdidXtQqJbHhOg7lWii0OAA4U+YgNkKHUikn4AvQv2ssLk+ADgkG4hLC67yxrqVcrr9bFypUczVVowVh7NixPPTQQ1RVVfHhhx/yySefMGHChEZX3F49lQE2bdrEU089xaJFixg6dGi9eZrbU1lMf910bZWrV2oEAJUVjnpfY7a6yDlbQUSYlhO55VwzKJGR/ZM4U2qjZ4dISstsHDxRCkCF1YlJI+dwbjnb9uej0ygYOTCZxFg95go3lTZP9eylYVrkcth9pIS+naPRaxXEx6hwuHwcz60gKkLNLdd2oldaJHERejw+P4kROrQKKC2tonO8kanXdsXmdDO8fyIJ4TrOltlAktBolcRG6FDIZchlkBilJS3OiCSBTq1EpZLjcHoZ1D0WawPv+5e63H+3mivUcrVKg5zZs2czatQo+vbty7Zt27j11lv54x//2OiKhw8fzvbt27FYLDidTjZt2sTQoUODfY39fj9r164N9ks+5+c9lYFaPZWzsrIA6u2pvH//fp566imWLl0aLAb15Tl/28KlyahTERmm5djpCsxVTtZ/d4b/7T2L48euZmqVnAKzg8O5FgISfLo5G3OVC4fDx6DuCRzNLcfjDeAPBFDIZRSU2kiNNSAFJDolhWN3+ai0+1j7TS6ffnUSk0HNmSIbxWUOvD4Jn1/iu0PFfHugkG0HC/H6q4+wA5LEwVPlvLfhGF/sPovHG0Apl1FmcdA1LYyp13VmxvjuDO+dSOekcLokh3O61MrmPWf5avdZvjtUTKChkWhBaKYmTV0xZcoUpkyZ0qwVt1dP5bfffhu/38/DDz8czHL//fczevToWnku9HJa4eKiUsqRy2X4/AFc3gCFZZU4nD6Ky52YK10oFTJkQKeUML7dV0C4SY3V5mbyNZ0oq6ye/+hsqY0Io4acgkoSY/S4vT5cHj+7jhTRMSEMk16F2+PH4w1w9HQ5CrkMrVqBxeom0qTBbHUBUGnz4HL7UOnVnCmxsfNwMW6PnxKLgykj0zlTYkMmgw4JYYwbnFbjfUiSRLHFidXuAapnavX5JNR1nzUVhGZrtGNa7969a40ZaLVaunXrxvPPP0/nzp1bNWAoEaeMmi6UcpVXufn2YCG5RVVEGNT4JYmjeeUYdSpmjOmGRqXg/S+OYzQo8Xok9DoVKpUCo1aJTqPE65fIya/E4fGREK1nakYnjFo1p0ttbNx5GrlMIj7ayKFsM5V2D3GResINapJjDVzZI45wg5pDueXkFlaSGmeif+doZDIZO44WsmprLsUWJ5EmNTdd05mcfCtymYx+XWLomx5V670cOWNh854CzJUuxg1NY3C32GaPhTVVKO3DnxO5mqZVOqbddtttGAwGZs6ciVwu55NPPuHUqVNkZGTw1FNP8d57711wYEFoCxq1AjnQu1M0KoWM3UdL0WuUmPQqfH6J9EQDN16dTn6pjSqnh7MlNhQ+P263j15doikx2+nVOQqFQkHP1DCM2urpJdJijdw5oQd+SUIhlzO4ayynCq2EGzV0TwlHLpcF+xX0TY+iV4cI5DJZ8A+4zyvRs0MkqfEmTAYVUQYNZbrqr/smXd3/NHumRtE5MQwAtVLMTSm0rEZ/o7777juWL18e/PmOO+5g6tSpPPvss7zxxhutGk4QWoJMBl1TI9BoVUToVVTa3BzINmPSq6iwu1n+9SmKLQ4qbR4UChkapYLsggo6JIThdHgoq3RSWuGiqMyOghSiw3SofmxmL5fLgwNxCVF6EqLq73GskNccskuKNZJf5sAvSXSMD6NHWiSRYVpk0EhrT1EIhNbR6G+W0+mscUVOSUkJbnf1zTt+cVOMEOIkJHYdKcFidRFm0jKkeyzXDEiia2oYVoefo3kWss9acXn86LUKAm6JuCQtfbvEEKZXE2nS4XL7OZhTTqRJg6XSSXmVm7gIXXD9fr+E8scC4fNXDzz7A1KNI4S6dIwzVd/ioFQQa9Igl8tIbKCgCEJra7Qg3HXXXdx0002MGDECSZLYtm0bjz76KG+88QaDBg1qi4yCcMEkCWxOLya9CovVxf4cC7sOFxJh1OILSKiUcpxuHxJg0qnpkhZB9+QI4qJ0WKwuDFolJeUO9BoFdqcPpUKOSV99WsfrC7DzaAmWSie90qOQy2UcOmVGoZDj9viJj9YjSWCudBITrqdf5+hg+0yoPsebnhjW5HPPp4urOFNiIzFGT6fE8Nb6yITLWKMFYdSoUfTv35+vv/4apVLJH/7wBzp27MjZs2dJSEhoi4yCcMHkMhlXdI9l+dYckmINHM614A/IyC2qwqRXE2lS07NjFC63j75dohjeKxGPz8/mPfk43D6Qy8gtrMTlDtA1JYwuqeHo1NX/bCxVLkrLq+8DOFVQiRQAhULOwRwzCVEGqs5WgiSRX2YnLtKFUa+kb/qFNbVxef3sPV6KBFQ6POw7aSYyTMPwXgn13pAnCM3VaEH47W9/y4YNG2pdTVTXDWGC0J7MVhdOt5+EyOq7egHyLXbOljk4caaC5DgDPl8Au9OL2+PDoFMRZlSTFhtGfJSetLjq0zVeXwCH24dGLedATjlIEmeKqwg3qBgVpg1uz6RXo9Uocbl9xITrUCjk5BVaSYo2oFIqUCvl+H6850ClkAcLyYVQyGXodUqcLh9nS2yYK13IZNXzKw3oHPMLPjVB+Emjv6HJycns2bOHAQMGIJeLRhxCaDJbXXyzrwAJ6JgYRnpSGD+cNGOxOtm2v5C+XaLRqhUYdEoqbAoUChkxEVquGZBEtKnmAK5Bq6JP52gKyxx0Sgpj95Fi+nSOImNACrHhP71Wr1GSMSAJh8tHhFGNTAbJMQbUKgUerx+dWkFppYseHaMI16tJjq05PuD0+MgtrMJs9xKpUyKX1z/eoFLIuap3ImUVTvzZZVisLmTQqtNWCJefRgtCdnY2v/nNb1AqlajVaiRJQiaTsWfPnrbIJwhNYnf58AUkApKE1+/ni91nkSEDCSpsnuBAb1yUnphwHTqtkoFdognXa+pcX5ekcLokhVNS7iQxWo9Rp6ZbSu3z9oGAhE6rDF5BFH3uCOLHy0c7aOu/a+xQroWzxTbOmh30SosgOcbQ4Hs06VSYdCoiTRqiw3WE6VV0TxVjCULLabQgLFu2rC1yCMIv4gsEOH62Eo1KjsPtQ5JAr1NRYrExekgaX+3MIzbSwORRHRnSPb7J642L1NV7CejZMhu7j5QgV8i5qlc8sRH1Xypal5/f5NicGx4jjBpG9U1s1rYEoSmadMro8OHDOBwOJEnC7/dz+vRpfvWrX7VFPkFolEwmY+XXORSU2qpPochk9OkUzZ6jxfRIjwZJ4veZvemZHk2EtuWu4S8pdyIBfn+AskpnswtCrw5RaFVKYqMNxIU13EtZENpCo/865s+fT1ZWFi6Xi/j4eE6fPs0VV1whCoLQKlxeP/6AhEHT9D/cMll1PwSnx09kmJYKq5tis51rBqXg9QXokRZBbLiuxacWSI4xUlBqR6GQER/V8Omeuhh1Kvp1jg65KQ+Ey1ejo8Tbtm0jKyuLsWPH8s477/Duu++i1WobWwyo7mF8ww03MGbMmOCpp23btpGZmcnYsWNZtGhRncsVFBQwY8YMxo8fz7333ovdXt3WMDc3l9/+9rdkZmYyc+ZMcnJy6lx+6dKljB8/nnHjxrFp06YG8wihw2x1kbXrDF/uPM3ZUnudr/EHJI6cLmfzvgJ2HCnG7vQSCEhMvLojKqWccquLnh0jmTSiI1f1jGdk38QaA8EtKT5Sx9ghaYy5IjXYi1kQLmaNFoTY2Fj0ej2dOnXi+PHjDBkyhPLy8kZX3F49lffv38/q1atZtWoV77//Pi+//DIVFRWip/JFoKzShdcfQAKKLLULgj8QYP3O02zadZb3NhzlvfVH+WrvWQD6dozi6TuGMHf6AKZmpNc7WNzS1Ep58BJXQbjYNfqbrFKp2LVrF507d2br1q1UVVU1qSC0V0/lrVu3MmbMGDQaDdHR0QwZMoTNmzeLnsoXgbhIHWqVApkMEuu44uaHbDNb9ubj8weQJHB6/JitbqB6QDYuQkenhDBUYq4fQbggjRaEefPm8eGHH5KRkcGRI0e46qqrmDRpUqMrbq+eyud3QouNjaWoqEj0VL4IRBo1XD84hXFDOpAcXV0QCi12tu4vYN+pUg6cMBMXqaPK5qZHh0i6pkYwvE8C0DrTPwvC5aZJPZX//ve/A9VdyqxWKwcPHmx0xe3VU7mu5eVyeZ19oEVP5db1S3KVVTjYsD2XvcdKKSl30L9bLFqdkkSVAVeYH41KQcagFK7o0fRLSH9pptYkcjWPyNU66i0Ihw8fRpIkHn74Yf7+978H/9D6fD7mz5/PV1991eCK26uncnx8PKWlpcGfS0tLSU9PR5Ik0VO5DTU3VyAgUeX0IpdDlcPL7uOlZOdX4nT7sDu9WMqd9OoUhVatoGtyJEkx1Xf9Nmcbl8pn1VZEruYJtVwt2lP5gw8+YM6cOZw5c4b77ruPOXPmMGfOHObNmxc8v9+Q9uqpPGrUKDZt2oTT6cRisbBjxw6GDRsmeiqHsIAksf1IMet3nubdDUd5d/1RrHYPapUCjUpOj46RDO2TwOhBKWT0TwoWA0EQWlajLTQXLVrE3LlzL2jla9as4Z///Gewh/Fdd93F9u3beeGFF4I9lR999FFkMlmNnsr5+fk88sgjmM3mYE/l8PBw8vLyePjhh6mqqgr2VI6Pj6/RUxmqLzv97LPP8Pl83HvvvcF+0HXlaQ5xhNB0zclV7nCzemsOlXYPpwqsAPRJjyQqTEt0hI4+HSOIDvvlReBS+KzaksjVPKGW60KOEBotCMJPREFousZyBSQ4N5dbocXBpl2ncbh87DtRRlyElgE9Yrm6dxLxDXQOa+lM7UXkah6Rq2lapaeyILQUl8fPkTPl5JfYyC+zo1ErGDM4hdhwPX4JYiJ0DOoZh0YpZ0SfpGBXMkEQ2oYoCEKrsrncHM+34g+AFJAosjjILazih+PVA/9qhYLfXN+V6dd24XBeOd0UMnqkRYppnQWhHYiCILQamQyyC6vQqhRYrG5sTh8er7+6r+WPzjWQ0WuUDO4WW9+qBEFoA40WhPXr1/O3v/2NyspKJEkS/RCEJrO7vciRY3f5MRnU2Jw+VEoFRr2KK7rHgRwG9xRFQBBCRaMF4dVXX+WRRx6hV69ezb6RS7j8uLx+dhwupqTCych+iWh1SirsLmSSCp1WiQR0SgxDksnoEG+kU0JYe0cWBOFHjRaEsLAwxo4d2xZZhItcuc3F1/uL2HGoiCKzA61STre0SMKNWrxeH3qtEpVcjk8KoFXKRDEQhBDT6FxG/fv3r3NGUkH4OZfXx8qvcym2OHB7/ABs3HkGp9eLVilHoZCDJBEVpqFPhwiubEbXMkEQ2kajRwhbtmzhv//9LyqVCpVKJcYQhBqqHB4sVW5kMhkVNjfREToMOhVqlQKDVklcuJ7UWOOP40/tnVYQhIY0WhDefffdNoghXCzsLh/7TpmxWF3o1Aqsdg8yICpcS+ekMIosdob1SSDcqKFDvInkaH3I3cwnCELd6i0I27dvZ9iwYRw6dKjO55OTk1stlBCafIEA//vhLE6Xj2/2FRARpkWllNOnYxTlVhfXX5GC0xMgXK8iKSkipO7aFAShcfUWhM8//5xhw4bx3nvv1XpOJpOJgebLjNfvp6zKg8cbwOH2UeX04fI6GNwzjuhwHWnxRgw6NQZxc7EgXLTqLQjPPvssQJ0FoanWrFnD22+/jdfr5fbbb2fGjBls27YtOLndhAkT6pw4r6CggHnz5mE2m0lPT2fhwoUYDAYqKyt56KGHKC4uRq1W88wzz9CzZ896t3///ffTtWtX5syZA9CkbQs/kclkHMq1sPtYKUfzLPzquq6oVXKiw/R0Tg7H7vQSE65jZL/E9o4qCEILaLVmsK3RU/nf//433bp1Y/Xq1fzhD39gwYIF9W7/008/5bvvvgv+7HK5mrRtobp38Vc/5PPp1my+P17Md4eLKDQ7+L81B4kO12PQKxjUM5ZrBiUzsq+4WkgQLhWtVhBao6dyIBDAbq9uvu50OtFqtQA1eioD5OXlsWLFCqZPnx58bP/+/fVuW6jm8QXYfriIL/bk898Nx6hyeHE4vCREV089bdKp6ZJk4orucVzdK5ExV6QQEy56EwjCpaLV5jKqq4fxkiVL6NevX43Hft5T+dxy9fVUvuOOO7j11lsZMWIEdrudpUuXAtToqXyuo9vTTz/N+vXrG8wjeir/JLe4iv2nzHx3sJgeHaubDp0uqkKvVZIcayQ51kiXpDBiw8UggSBcqppUEDZs2MCRI0eYPXs2WVlZTJw4sdFlWqOn8jPPPMOMGTO47bbb2Lt3L3PnzuXzzz/HYDAEX7t48WLGjBlDly5dLihPQy7FnsonzpRz4EQZ/91whD6dY/D6/UQY1USYNOQWWumSEk7PDlGkJJjo1zmm+gazNsjVWkIxE4hczSVytY5GC8I777zDt99+S1FREbfffjtvvPEGeXl5/PGPf2xwudboqZyVlRUcNxg4cCDR0dFkZ2fXOOrYuHEjarWazz77jLKyMgB0Oh39+vUL/lzfthtzqTXIqbS7+GzrKZBkeP0SOq2SsgoXu4+UcP3gVHRaJd1Swkj+sRBaLPY2ydVaQjETiFzNJXI1TYv2VD7n888/Z8mSJeh0OiIjI/n4449Zu3ZtoytujZ7KPXr04MsvvwQgNzeXkpIS0tPTayy/YcMGVq9ezapVq5g+fTrTp09n1qxZ9O/fv9FtXw4O5ZaTtecsK74+RW6xA0uFC4NOBcCRHAtX9Umgf9dYenWM5Nr+ScFiIAjCpa/RIwSlUolarQ7+HBYWFjy/35D4+Hjmzp3LbbfdFuxhfOWVV/Liiy8yZ86cYE/l8ePHA9ToqfzXv/6VRx55hLfffjvYUxngxRdf5Mknn2TJkiWo1WpeeuklTCZTrZ7KddFoNPVu+3JxINdCXlElOw4WU1DmYEjPONISjNidHsZdlUZFlZvuaZGM6BOPQt5q1xsIghCiGu2pfN999zF16lRee+01PvroI/71r3+xb98+/vGPf7RVxpBxsZ4ysru8nMyv5HSpHaNOyQebjuPzSyjlMHf6AGRyGfEROiKN2jbN1dZCMROIXM0lcjVNq/RUfuKJJ/jLX/7CsWPHGDBgAP3792fhwoUXHFJoG+YqNyfzK/H6AxSW2sgpsDKoexyWCicjBySTW2ClQ2IYHeJN6DWq9o4rCEIIaLQgxMfH85///Aen04nf78doFOeUQ115lYvNe/P54UQZgQBEh2vx+QOUVbpIiDYQ7vPRMdFEjw4RohgIghDUaEEoLS1lxYoVVFRU1Hj8L3/5S2tlEi6Q1xeg1OrkbJmdgjI7+aV2UuKMnCm2MqRXAt1Sw+ndMUo0sBcEoU6NFoR7772XhIQEUlNT2yKPcAECgQB7sss4cNJCaYWDQT3iUavlJEbrOVtiY2ivOK4dlExCpLirWBCE+jVaELxeL2+88UZbZBGaQZIkjp6pYOvBQlQKObuOFJOTbyXcqGb34UKG9EkiXK+hX5dY+nSKEsVAEIRGNVoQevfuzfHjx+nWrVtb5BEaJVFa6ebY2Qq27s3nVH4l1wxMxmr3kBCjx1zhpGNiDCkxBq7pl9jsu7EFQbh8NVoQBg0axJQpU4iNja1x/0FWVlarBhNq8voCFFU62HmoGKfHj9vrx+70EZAgv8xO15QIJCnANQOT6d8pCq1aDBYLgtA8jRaEN954g4ULF5KWltYWeYQ62Jwevj5QhEGv4nSxjTPFNob2SUAulxFmUFNS7uSq3glk9E8ExBGBIAgXptGCEB4ezg033NAWWYTzyar/vB8vqOKH4yUM6VPdiKbC5sbp9tIrPYrCMhvpSeFc2TMeUQwEQfglGi0I11xzDS+99BJjx46tMYVF7969WzXY5e7rg0Vs3JFHhwQTg7rHEZDA7vTSOSkMuUJGWYWLkf0Tuf/WgSF1d6QgCBevRgvCmjVrgOpZRM+RyWRiDKGZApLEziOl5BZZSUswMaR7LMp6ppLeebyE/6w7QiAg4XT7SIjRMaBbHDaHC4NWw5U94klPMpEYIa4cEgSh5TRaEL766qsLXnl79FT2+/0sWLCA3bt3I0kS06ZN4/bbb683T1sot7nZe9LMii3Z2J1edBolGqWcK7rF1nptfpmdglJ7cM6k8io3Pxw3M3N8NxzuABqVnI7xRhQyMfmcIAgtq96CsGTJEu666y6effbZOp+fP39+gys+11N5+fLlqNVqpk+fzpAhQ3jsscd47733SExM5J577mHLli1kZGTUWPZcT+Ubb7yRN998k7feeot58+YFeyovWbKEr776igULFvDBBx/UWHb58uVUVFSwevVqXC5XcJbVmJiYWnmGDh1aq5FOS7E5few7VUal3U2pxYlKqcDh8gLg8vgos7rqXM7r96NSKuiVHsXhHAsAV/VOoGNcWKvkFARBOKfer5kmU3Xnn4iIiDr/a0x79VTu2rUr9913H3K5HL1eT2pqKoWFhXXmaemeyj5/gJOFlWzeX8i67/I4nGPhVEEVdqcXSQYdE8OIj9LTMaF6Urm6dIgzER+lY0DXGKZkdOaeKX0YPTCpRXMKgiDUpd4jhI8++ojp06dz3333XdCK26un8oABA4Lr37NnD/v37+fll1/mww8/rJVn//79F/Te6uL0+jiQY6HE4iS3sHqQV6dREPBLOL0+IpEY1D0OkOieGkmXpLq/8ctkMgZ3rX0qSRAEobXVWxAaaZPQqPbqqXzOzp07efDBB1m4cCHh4eGt2lPZ5vCweVsBFTY35VVuKu1uEmMM7D9eypU940CmoXNqODcM79zgNu0uL7sPF5JXXEVSrJER/VOaNBFdqPZxDcVcoZgJRK7mErlaR70Fwe12c/jw4XoLQ2OXnbZXT2WATZs28dRTT7Fo0SKGDh1ab56W6qm852QZ5VUe9FolGpWSb/YVkBZvYkjvBJxuH307RTOkWyxlZbY61+twe9l9vBSH00eBxc7eY6UoFXJsNg/Deyc0mCnUmnKcE4q5QjETiFzNJXI1TYs2yDlz5gxz5syp95t1Y5edDh8+nMWLF2OxWNDpdGzatIn58+fzySefkJeXR0pKCmvXruWWW26psdzPeypnZmbW2VN58uTJ9fZU3r9/P0899RRLly6lR48eDeZ55plnGv+EmkAhl/HlrjxmTepNicXOr0Z3o7TcQVKsgVF9E5E3cFRQ5fTyv335RBk1VNjd2Bw+bE4fAHnFVY0WBEEQhJZSb0Ho0qULK1euvOAVt1dP5bfffhu/38/DDz8czHL//fczevToWnnOP7K4UN1Swsgckc7yzdlMv74LJoOK4X0SMGnrv6q3qNzJgewyAhK4XV78Bg2l5U4SogykxhlRKmWkxYlmRIIgtJ16eypPmTLlFxWES1FDPZVdbh9VHi8mrQqtquHbO6wOLy8u201shI6UOBNalQK5PIBGrSYnv4LwMC0xYVoyBiSgkDU8hhBqh6nnhGKuUMwEIldziVxN06KnjAYPHvyLA10u3F4/CqWcWI2uSa8/kV9BkdlBuEGDw+lBr9UiR4ZSKTF6cAodE03I678iWBAEoVXUWxAau/FMAKvDw65jpSzfnI1KKWf2lD70SI1odDm/XyIt3kSh2Y5cDlHhGvp2jSHGpEevEe0tBUFoH41OXSHUrcrp5cvd+azbnvvjnEPw9vIDvPzHq9EoG/523yHexJgrUyitcBFh0nBl9zgMDYw3CIIgtAXxV6iZ7C4fVocbS5WHSru7xpiC2+uvd4zh5+IjdcRHNu30kiAIQlsRJ6qbweX18/X+Ar47VIzN4WX/iTJGDUgGQC6D30/shU4tTvkIgnBxEkcIzbB1fwF2pxeFXEZJuZ1Zk3qxL9vMjHHd6ZoSTlqsuExUEISLlygIzfDND4UM6RWPQgZdUyPolBhG7w5R7R1LEAShRYiC0Awuj49Ik4ZhveIQ7SoFQbjUiDGEZkhPCqN3xyhEMRAE4VIkjhCa4fcTeqJu5JJSQRCEi5X469YMWnEFkSAIlzBREARBEASglQvCmjVruOGGGxgzZgzLli0DqltrZmZmMnbsWBYtWlTncgUFBcyYMYPx48dz7733BttmVlZWctdddzFp0iSmTp3KkSNH6lx+6dKljB8/nnHjxrFp06YG8wiCIAjVWq0gFBcXs2jRIt5//31WrVrFRx99xIkTJ3jsscd46623WLduHQcPHmTLli21ln366af5zW9+w4YNG+jTpw9vvfUWAP/+97/p1q0bq1ev5g9/+EOwWc7P7d+/n9WrV7Nq1Sref/99Xn75ZSoqKurMc/LkydZ6+4IgCBedVhtU/nlTe4Bx48axceNGOnToQGpqKgCZmZls2LCBjIyMYD+EUaNGsWvXLt58800Abr75Zn77298yb948AoFA8GjB6XSi1WoBavRD2Lp1K2PGjEGj0aDRaBgyZAibN29GkqRaeTZs2NCsntFyeWheXSRyNV0oZgKRq7lErsZdSJZWKwglJSW1mtovWbKkRlOauLg4iouLAXjuueeCyxmNRpTK6mixsbHB19xxxx3ceuutjBgxArvdztKlSwHo27cvS5YsCS7ft2/f4DZiY2MpKipCJpPVyrN///5mvafIyNq9m0NBc+c8byuhmCsUM4HI1VwiV+totVNGTW1qf/5jDS33zDPPMGPGDL755huWLl3K3Llzg0cMDS0vl8ubnEcQBOFy1WoFIT4+nrKysuDPJSUlZGZm1nrs/Eb3UVFR2Gw2/H4/AKWlpcHXZGVlBXswDxw4kOjoaLKzs2ttt7S0NPjzueXrynP+tgVBEC5nrVYQhg8fzvbt27FYLDidTjZt2sTQoUPJyckhLy8Pv9/P2rVrGTVqVI3lVCoVgwcPZt26dQCsXLky+JoePXrw5ZdfApCbm0tJSQnp6ek1lh81ahSbNm3C6XRisVjYsWMHw4YNqzPP+dsWBEG4nNXbU7klrFmzhn/+85/BpvZ33XUX27dv54UXXsDtdpORkcGjjz6KTCYLDiqPHj2a/Px8HnnkEcxmM4mJibzyyiuEh4eTm5vLk08+icViQa1W89BDDzF8+PAag8pQfdnpZ599hs/n495772XKlCn15hEEQRCqtWpBEARBEC4e4k5lQRAEARAFQRAEQfiRKAiCIAgCIAqCIAiC8CNREARBEARAFARBEAThR6JjWh2sViv/+9//KC4uRiaTERcXx7Bhw9r9zuZQzZWdnc3GjRspKipCLpcTFxfHyJEja8wp1R5C9fMKxVxiH14auX7pfhRHCOf54osvuOWWW9i1axcOhwO73c7OnTv59a9/zZo1a0Su8yxbtowHH3wQqJ5ksHfv3gA88cQTwckH20Oofl6hmEvsw0sjV4vsR0moYdy4cZLZbK71uNlslsaPH98OiaqFaq6xY8dKDoej1uMOh0MaN25cOySqFqqfVyjmEvuweUI1V0vsR3GEcB6ZTIbJZKr1uMFgQKFov57KoZpLqVTi8/lqPe5yuVCpVO2QqFqofl6hmEvsw+YJ1VwtsR/FGMJ5pk2bxq233sqYMWOC/RPKysrYtGkTU6dOFbnOM3v2bKZMmcKwYcOCuUpLS9mxYwdz585tt1yh+nmFYi6xDy+NXC2xH8VcRnXYv38/W7dupaSkBKhupjNq1KgazX3aw4EDB9iyZUvI5SouLmb79u2UlJQgSRLx8fEMGzaM+Pj4ds0l9mPTiX3YPKG4D+GX70dREOoQCATYs2dPjSsI+vXrh1qtbtdcFouF0tJSunbtilz+09m+Q4cOBQeQQsHatWuZOHFie8cQ+/EXEPuwYRfDPoTm70dxyug8e/bs4ZFHHiE5OZmYmBig+rArLy+P559/nmHDhrVLrnXr1vHCCy8QERGBx+Nh8eLFdOvWDYD58+ezYsWKdsm1cuXKWo+9/vrrwXOZ56Yeb2tiPzad2IfNE4r7EFpmP4qCcJ4nn3ySd955h44dO9Z4PC8vj/vuu6/dLiv7xz/+wapVq4iKimLdunXceeed/Pvf/6ZLly51tgdtKx9++CG5ublce+21wcfsdjvfffcd0H5/TMR+bDqxD5snFPchtMx+FAXhPH6/v9YvIEBqamq77myobi8KcMMNNyCTybj77rv54IMP2rU39LJly3jjjTc4ceIECxYsICoqiilTpvDCCy+0WyYQ+7E5xD5svlDbh9Ay+1EUhPNcc801zJ49mxtuuKHGFQRr1qxp15abnTp14uWXX+a2224jISGBCRMmUFZWxowZM3C73e2WS6FQ8MADD7B7927uvfdeZs+e3a7/KM4R+7HpxD5snlDch9Ay+1EMKtdh48aNbN68ucYVBBkZGYwfP77dMjkcDt555x2GDh1a49zpl19+yeLFi1m1alW7ZTvHZrOxYMECduzYwdatW9s7jtiPF0Dsw8aF+j6EC9+PoiAILc5ut2MwGNo7hvALiH14aWjufhR3KtfjiSeeaNJjbe1iyHXuFzDUcjX0WFsLxVxiHzbPxZCruftRFIR6/HykvqHH2prI1TwiV9OFYqb6Mohc9fslucQpo3r4/X4sFgtyuZyIiIh2naPk50QuQRBaizhCOI/ZbGbu3LkMGTKEadOmcfPNNzN06FBmz55NQUGByHWR5BIufkePHmXy5MkMHTqUxx9/HJvNFnzupptuErlaIZc4QjjPzJkzmTp1KhMnTgx+y/X7/Xz++ed8+OGHvP/++yLXRZDr0UcfbfD59rrGPhRzhWImgOnTp/OnP/2J7t2789prr7F//37ee+89DAYDU6ZMqfPOXJHrl+USRwjnMZvNTJ48ucYpD4VCwaRJk7BarSLXRZLriiuuYOPGjfTv358hQ4bU+k/kCu1MUD1t81VXXUVkZCRPPfUUQ4cO5d5778Xr9bZbpks9l7gx7TypqaksWbKESZMm1ZhCdtWqVaSmpopcF0muqVOnkpuby9mzZ3nooYfaLcf5QjFXKGaC6itktmzZwqhRo5DJZDz88MP8+c9/Zs6cOTidTpGrNXL9ggY9lySr1SotWLBAuu6666Q+ffpIvXv3lq677jppwYIFUkVFhch1keSSJElyu93SN998064Z6hKKuUIx08mTJ6Vf//rX0ooVK4KP+Xw+6dlnn5V69eolcrVCLjGGIAjCRcdisQTnEwolF3succroPE6nkzfffJONGzdSVFSEXC4PNr/405/+VGfrPJErdHNt2LCB4uJikesiy3Qu11tvvcX69evrzNVeLuVc4gjhPH/84x/p3bs3N998c41z4itWrGDPnj0sWbJE5LqIc61cuZLdu3eLXCGeqaFcofq7dUnkaoVTWRe1CRMm1PvcjTfe2IZJahK5mkfkarpQzCRJIldztUQucdnpeaKioli/fj2BQCD4mCRJfP7550RGRopcItcllysUM4lc7ZNLnDI6T2FhIU8//TS7du0Knju12WwMHjyYJ598kqSkJJFL5LqkcoViJpGrfXKJglAPn89HeXk5kiQRFRWFUhka4+8iV/OIXBd3JhC5muuX5BKnjOrx9ddfExsbS1xcXPAD/d///tfOqUSu5hK5Lu5MIHI11y/JJQpCPbKyspr0WFsTuZpH5Gq6UMxUXwaRq36/JJc4ZSQIgiAA4sa0On399dds2LCh1o1W48aNE7lErksyVyhmErnaPpc4QjjPuWljJ02aRFxcHAAlJSWsXbuWLl268PDDD4tcItcllSsUM4lc7ZSrebc+XPrGjh0r+f3+Wo/7fD5p/Pjx7ZComsjVPCJX04ViJkkSuZqrJXKJQeXzaDQaioqKaj1eUFCAWq1uh0TVRK7mEbmaLhQzgcjVXC2RS4whnOeRRx5hxowZdOzYMTgfSFlZGTk5Oe3WOUrkErkut0wiV/vkEmMIdTh58iQbNmxgzZo1yGQyMjMzGTp0KIMHDxa5RK5LMlcoZhK52j6XKAjnef/99/n4448ZN24cMTExQPWMgZs2bWLSpEnccccdIpfIdUnlCsVMIlc75WrJQY1LwdixYyWHw1HrcYfDIY0bN64dElUTuZpH5Gq6UMwkSSJXc7VELjGofB6lUonP56v1uMvlQqVStUOiaiJX84hcTReKmUDkaq6WyCUGlc8ze/ZspkyZwrBhw2o0mdixYwdz584VuUSuSy5XKGYSudonlxhDqENxcTHbt2+npKQESZKIj49n2LBhxMfHi1wi1yWZKxQziVxtn0sUBEEQBAEQs50KgiAIPxIFQRAEQQBEQRBa2LPPPsvkyZOZPHkyffr0Ydy4ccGf33//fd55551W2e7jjz/Otm3bWmXdoeS1115j5cqVtR63WCx07969Rbdls9m48847cblcLF++nHvuuafWa2bOnMmGDRtqPb548WK6d+/Op59+WuNxh8PBwIED61wXwA8//MDMmTPJzMxk4sSJzJo1ixMnTgBgt9uZNWsWLperBd6dUBdxlZHQoubPnx/8/+uuu46FCxfSt2/fVt/uc8891+rbCAUPPPBAm21r4cKFTJs2Da1We0HLJyUlsXr1aqZOnRp8bNOmTej1+jpf7/F4uOeee1i6dCm9e/cGYNWqVdx1111kZWVhMBiYOHEir732WrvNKHqpEwVBaDOLFy+mvLycJ598kuuuu46JEyeyefNmKioqmDNnDnv27OHQoUMolUrefvtt4uPjKS4uZsGCBRQWFuL1ernxxhuZPXt2rXXPnDmTGTNm0KdPH26//XYyMjLYt28flZWVzJ07lxtuuKHG630+H8888wx79uxBpVKRkpLCCy+8gMFg4Msvv+SNN97A7/djNBp59NFH6devX43857+fmTNnEh4ezqlTp/j1r3/N+PHj+etf/8qpU6eQy+VMnz6d2267jaqqKp577jmOHz+O1+tl2LBh/OUvf6nR97aqqoqMjAw2btwYvHzwV7/6FX/84x9Zv349Xbt25c4772TTpk0sWrQInU5Hnz59ary/Tz75hA8++IBAIEBERARPPPEEnTt3pqqqiqeffpqjR48ik8kYOXIkDz74YK2+u4WFhWzevLlGgW/Ma6+9BvxUtEaOHMmXX35JUVERCQkJAKxYsYJJkyZx6tQpAA4cOMD8+fNZtWoVTqeTqqoqHA5HcJ2TJk3CaDTi9/tRKBRMmDCBhQsXcueddwbvxhVajjhlJLQbt9vN6tWreeSRR3jyySf53e9+x+rVq0lMTGTFihUAzJs3j1tuuYXly5fz6aefsm3bNtatW9fges+cOcOIESP49NNPeeihh/jb3/5W6zU//PADO3fuZPXq1SxfvpzU1FSOHTtGdnY2f/3rX1m8eDFr1qzh/vvv5w9/+AM2m63R9xMWFsa6deuYOXMmTz/9NB07dmTDhg189NFHfPzxx+Tl5fH888/Tu3dvli9fzsqVKykvL+ff//53jfWYTCbGjBnD6tWrAcjOzqa0tJSRI0cGX1NWVsZjjz3G4sWLWb58OcnJycHndu7cycqVK1m2bBkrV65k1qxZzJkzB6g+pRcREcGaNWv47LPPOHbsGEuXLq31XrKysrjqqqtqFIrvv/8+ePrv3H8HDx4MPv/AAw/UOIJRKpVMmDAh+D4KCgqw2+107do1+Jq+ffuyatUqAMLDw5k3bx6zZs1i9OjRzJs3j88++4zhw4cHZ+vUaDQMGjSILVu2NLo/hOYTRwhCuxk7diwAqampxMTE0KNHDwDS0tKorKzE4XCwa9cuKisrg98+HQ4HR48erfWN/+dUKhUZGRkA9OrVi4qKilqv6datGwqFgmnTpjFixAjGjRtHv379WLZsGVdddRWpqakADBs2jKioqBp/+Orz8wnEtm3bxrx584DqP/Br164FYPPmzRw4cCB4br2+8+HTpk3j6aef5s477+Szzz7j5ptvRi7/6fvb7t276datG126dAHg1ltv5ZVXXgluIy8vj+nTpwdfX1lZSUVFBVu3buWDDz5AJpOhVquZPn06//nPf7j77rtrbP/UqVOkpaXVen///Oc/azw2c+bMBj+TyZMn8/jjj3P33XezatUqpkyZ0uDrf//73zNt2jR27drFrl27WLJkCUuWLOHTTz/FZDIB1b8fOTk5Da5HuDCiIAjt5udztNd1a30gEECSJD788EN0Oh1QPXiq0WgaXK9KpQr+8ZTJZHW+JiwsjFWrVrFnzx527NjBn/70J2677bZap04AJEnC5/Mhk8n4+W07Xq+3xut+fm5cqVTW2PaZM2eIjIwkEAjw2muv0blzZwCsVmudGQcPHozP52P//v2sXbuWDz/8sMbz52f5ee5AIMDkyZODBSkQCFBSUkJ4eDiBQKDGegKBQJ3THcjl8lqvvRD9+vXD7/dz5MgR1q1bx3vvvcdXX31V52t3797N3r17mTVrFtdeey3XXnstDz74IJmZmXz77beMHz8eAL/f3659By5l4pSRELKMRiMDBgwInlKxWq38+te/Jisr6xev+3//+x+33347AwcOZM6cOUyZMoWjR49y1VVX8e2333LmzBkAtm/fTmFhIf379ycyMpJDhw4hSRIOh4Nvvvmm3vUPGzaMzz77DKgeE/jd735Hbm4uI0aM4N1330WSJDweD/feey///e9/61zHtGnTeOaZZ+jevTtJSUk1nhs8eDAnT57k6NGjACxfvjz43NVXX83nn39OSUkJAB988AG/+93vABgxYgTLli0Lbv/jjz9m+PDhtbbdsWPH4GfwS02ePJnnn3+e9PR0IiIi6n1dVFQUb7/9Nt9//33wsdLSUpxOJ926dQs+dvbsWdLT01skm1CTOEIQQtrChQt55plnyMzMxOPxMHHiRCZNmvSL1ztq1Ci2bt3KxIkT0ev1hIeH88wzz5CSksJf//pX7rvvPvx+P1qtln/84x+YTCYmTZrE119/zdixY4mPj2fgwIHUd6P/k08+yVNPPUVmZiaSJHHPPffQp08fHn/8cZ577jkyMzPxer0MHz6cWbNm1bmOKVOm8MorrwRPBf1cVFQUCxcu5KGHHkKlUnHllVcGnxs5ciR33XUXd9xxBzKZDKPRyBtvvIFMJmP+/Pk8++yzwe2PHDmyzkH666+/nv/7v/8LDuY2xfmDyudMmjSJV199lbfeeqvWMj8fVE5PT+fNN99k0aJFFBUVodFoMJlMLFiwgE6dOgHVVyLt3bv3srmqrK2JqSsEQajTE088wbBhwxocr2lry5cv58SJE+Ky01YiThkJglCnefPm8fHHH4fMjWA2m421a9cGr5gSWp44QhAEQRAAcYQgCIIg/EgUBEEQBAEQBUEQBEH4kSgIgiAIAiAKgiAIgvAjURAEQRAEAP4/4LgespeyNk0AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABfU0lEQVR4nO3deXRTdf7/8Wf2pEmabuleoFAW2UEWQSwjCBSkhVFwGUTHHWZcxlFmRBln3ED9OaIiOiPj8j0OuCNlExhQQQQUAdl3ugBd0jZdsq/390clUtrSFikN8HmcwznkJvfmlQTyzr2fez9vmSRJEoIgCMJlT97WAQRBEITwIAqCIAiCAIiCIAiCIPxMFARBEAQBEAVBEARB+JkoCIIgCAJwAQrCsmXLGDduHKNHj2bhwoUAbNq0iezsbEaPHs3cuXPPuv6rr77KvHnz6iz77rvvuOOOOxpd59133yUrK4sxY8awZs2as2YRBEEQfia1opKSEunaa6+VKisrJYfDIWVnZ0uHDh2Shg8fLhUWFko+n0+66667pG+++abeujU1NdLMmTOl3r17S6+//rokSZIUCASkd955Rxo0aJB02223NficO3fulCZMmCC53W6pvLxcGjlypFRZWdlglsOHD7fmyxcEQbiotOoewqZNm7jqqquIiooiIiKCMWPGsHr1atq3b09aWhpKpZLs7GxWrVoFwJNPPsm6desAWLduHR06dODOO+8Mbe/o0aMcPXqUZ599ts7z7N69m3vvvReADRs2MGrUKDQaDbGxsQwaNIhvvvmmwSynnlcQBEFo5UNGFosFs9kcuh0fH8/SpUvrLSstLQXg+eefZ+TIkQBMnDiR++67D4VCEXps586def755zGZTHWep1evXixYsCD0nPHx8aH7zGYzJSUlDWY59byCIAhCKxeEYDCITCYL3ZZ+niXjzGWn3z4fz3kmuVzeYJbz+byCIAgXO2VrbjwxMZEff/wxdLusrIycnJx6y07/RX8+nrOsrKzO9tPT05Ek6Vc/b2Wlg2AwvKZ+io01UFFhb+sYdYRjJhC5Wkrkar5wzCSXy4iO1rdonVYtCEOHDmXevHlYrVZ0Oh1r1qxh1qxZfPrppxQUFJCamsry5cu58cYbz9tzZmZm8tRTT3HnnXficrnYsmULDz/8MEC9LGeORTQlGJTCriAAIlMLiFwtI3I1XzhmaqlWLQgJCQk88sgj3H777fh8PiZNmsTAgQN54YUXePDBB/F4PAwfPpysrCygdlB5xIgRoXGE5tq9ezevv/46CxYsoHfv3uTk5DBp0iT8fj8PPfQQCQkJAPWy9O7d+7y/ZkEQhIuVTJLE9NfNVVFhD7tfAWazkbIyW1vHqCMcM4HI1VIiV/OFYya5XEZsrKFl67RSFkEQBOEiIwqCIAiCAIiCIAiCIPxMFARBEAQBEAVBEARB+JkoCIIgCAIgCoIgCILwM1EQBEEQBEAUBEEQBOFnoiAIgiAIgCgIgiAIws9atSCc737KNTU13HfffYwdO5YpU6bUmeb6TH6/n5tvvpnFixeHljXWa1kQBEFoZkHwer3k5eVRWFiIz+dr1oZLS0uZO3cuixYtYsmSJXz88cccPnyYJ554gjfffJOVK1eyZ88e1q9fX29dm83GE088wXvvvVdn+auvvsqAAQP48ssvmTx5Ms8//3yjzz9//nzy8/NDt3ft2sXSpUvJzc1l0aJFvPTSS1RVVTXrtQiCIFwOzloQDhw4wAMPPMCAAQO46aabuOmmmxg8eDCPPvoohw4dOuuGz3c/ZYBvvvmG7OxsAMaPH8+GDRvw+XysW7eOJ598MvS47du3c+DAAa699trQssZ6LQuCIAi1Gu2H8Oabb/Ljjz8yadKkOn2M7XY7Gzdu5Pnnn2fgwIE88MADDa7fUA/jU/0KTl92ej/lUyZOnAhQ53DRmdtUKpUYDAasVisjR44M9VCw2+3MmTOHt956i5dffrnOur169QrdPtVrWRAEQajVaEHo0qULf/jDH+otNxgMZGVlkZWVxdq1axvd8IXopyxJEnJ53Z2cp59+mvvvv5+4uLh6ec505rpNaenc4heK2Wxs6wj1hGMmELlaSuRqnkMFVo6crCY1Ts+JMgcKuYyr+yRjiFA3a31Jkvh250mKyxxc0SGG3p3NTa/UChotCNddd12TK5/tMa3RTzk+Pp7y8nISExPx+/04HA6ioqJC99vtdjZv3syhQ4eYN28excXFbNmyBaVS2Wiv5ZYQDXKaJxwzgcjVUiJX89Q4vXy45hAOtxeTXkN5lQu5XIbT5WFYr+SzrishYXd52XaogoWrDxIISigVMh77XX+6pJh+Va7z2iDH5/Mxd+5cdu/eDcA///lP+vfvz9SpU6moqGhyw0OHDmXz5s1YrVZcLhdr1qxh8ODB5OXlUVBQQCAQYPny5WRmZjY77PDhw1myZAkAK1euZMCAAahUqtD9BoOBjRs3kpubS25uLiNGjOChhx4iJyeHzMxM1qxZg8vlwmq1smXLFoYMGdLs5xYEQWiIzx/E6w8iQ4Y/KHGqB2Vjvx39gSBHTlbzwwELn60/xqa9pRw7WU3g5xX8AYl9edYLlL6uRvcQXnnlFfLy8rj55pv58ccfWbRoEQsWLODgwYO88MIL/L//9//OuuHW6Kf88MMP8/jjj3P99ddjNBpDYwTr1q3jq6++OutZR2frtSwIgnCuYowaRg9qx/68CtKTI6mye5DJZPTv0vBhn3U7TiCXyfh2ZzGpZgN+f7DeoaW4aN2FiF5Poz2Vs7Oz+fzzz1Gr1bz44otYrVZefPFFALKyskJnB11OxCGj5gnHTCBytZTI1XxNZ5Kwe3wcOWkjr6gag1bF598cZVjfZE6U2uiVEYfT7cdq89Auwcio/ikoFb/uMrFzOWTU6B6CQqFAra6tWjt27GDy5Ml17hMEQRCaVlbjotBip6jMgVajRK6QUVrpJLNfCvnFNWhUCsqqnFzdM4mMlCjO/TSbX++sJcjr9VJdXc2ePXsYPHgwANXV1Q2esSMIgiD8oqTSyeb9pZwsc1BZ7WF/npUovQaPy49GqSQpNoLuHWPp0i6KK9rH0Ck5sk2LAZxlD2H8+PHcfvvtBINBBg8eTGpqKjt27OCVV14JXRwmCIIg1OULBNl2uJyDBVZMRi3JcXqcbj8eb4DDJ61kpMZQ4/BQbfeSHKcn1awnKSbiV52Cf740WhDuueceUlNTKSsr47e//S0A27ZtY/DgwUybNu2CBRQEQQhndrePrZuOIQec7gBurx+bw0dphYuYSB1lVgfxsTpiynSUlLlwuiykxUeCJFFUZscUoSY5tu2LAZylIAChM4BOueeee1o1jCAIwsVm55FySqwuEuMi2JdfTqRei8vrJ8akwePz4fVLKFVyru6dRJXdS7t4PV5vgAMFlQCoVOEz6XSTSc6cPqKxZYIgCJcfCf/PMy443X68foiO1HCwwEqy2YBMJicxJoJu7WPo0zGG3/ROomNiJBkpJnpnxNG3i5n2CeEzA8JZ9xDglyknmlomCIJwOfH6A+wrrORQQRVatRKNWkGHJCOHj1cxelB77C4fxgg1nVMiSY3VIzttyFipkNMxKbIN0zesyYLw0EMPNWuZIAjCpe5YiY0fD1iodngwRqgxalVU2Tx076jHFwigViiIjFBxstxOx0Rjk1NXhJtGC0JTDWRGjx593sMIgiCEo2qHF6vDw4rN+ZRUOCkud5ASpyfJrKd3lzh2HS6jZ3osOp2CdhoDarWS/hlxTW84zDRaEB566CHi4uLo2LFjvUNEMplMFARBEC4Le/KtHD1ZjVajoKjMAYBaKaeowsHVfZLpnR5DzrBO1NS40Kgu7ot2Gy0Is2fPJjc3F6fTycSJE8nOziYyMvyOeQmCILQGp8fPkaIadh0tx+n2YYzQ0LNTLOu2HichJgJztJbBV8QTbdAQadDgcXnbOvKv1mhBuOGGG7jhhhsoKioiNzeXKVOm0LFjR2644QauueaaFvcSEARBuBgEghI7Dpex9UApWo0SpUKOFASHy0tirJ4br81AkiQGdksg2qBp67jnVZPf6snJyUyfPp1ly5bx+9//nv/85z8MHz68WRtftmwZ48aNY/To0SxcuBCoba2ZnZ3N6NGjmTt37lnXf/XVV+uc4lpTU8N9993H2LFjmTJlSp3+Bqc4HA4efvhhsrOzyc7OZsWKFaH73n33XbKyshgzZkyTYySCIFw+AkGJzftK+fDrIyzdnM/3+0opKndid/qRJAl9hBKjXk2MScPYgamMv6o9CVHato593jV5lhFAeXk5y5cvJzc3F7fbzZQpU5pcp7S0lLlz57J48WLUajW33HILgwYN4oknnuCDDz4gKSmJ+++/n/Xr19crMDabjTlz5rBixYo6F8O9+uqrDBgwgLfffpslS5bw/PPP8+qrr9ZZ9+233yY5OZnXXnuNiooKJkyYwODBgykqKmLp0qXk5uZit9u5+eabGTRoUJ0GO4IgXF78gSDVTh8HCit5f8V+4qMjSIjW4g9IxJq01Di8ZKSauKJDNHEmHQaNAtp8xqHW02hBONXUZunSpRw8eJAxY8bw9NNP1+mJfDabNm3iqquuCn3hjhkzhtWrV9O+fXvS0tKA2im2V61axfDhw+v0Q1i3bh0dOnTgzjvvrLPNb775JrSnMX78eJ555hl8Ph8bNmwI9UMYNGhQqBNabGwsUVFRlJeXs2HDBkaNGoVGo0Gj0TBo0CC++eabUP9mQRAuDz5/kAOFVqodXvJKazDpNPiDtXsJgWCQKqeXNLMRjUZBt7Qo+mXEhcU8QxdCowVh6NChREdHk5OTw4MPPhjqTLZ3714AevTocdYNWywWzOZfGkTEx8ezYMGCOgUlPj6e0tJSgDrNbU59SZ95RfTp21QqlRgMBqxWKyNHjgw11rn66qtDj1+5ciVer5eMjAwWLVpEr169QveZzWZKSkrO+hrOJHoqN184ZgKRq6Uu1lzBoERhaTV+v0T7JBNOt5dSqxOvz09xmZOT5XaQyYkxaDhWZKNjShQxRg2WShexQS2d+prIzuyEugVnDYXre9USjRaE6OhoAJYuXcqyZcvqnHoqk8lYt27dWTccDAbrVNVT65+57NdUXkmSGh3c/vLLL5k9ezb/+c9/UCqVDU7Z3dKBcdEgp3nCMROIXC11seUKShLbDlmwO7yotWqOHq8kxqRlf34FOo0SSZI4aXGi0yiI1Gtwuf2oNRqOW4ox6tWMGtwOu8tHfJSOq3smUl3l/NWZ2tJ5bZDz1Vdf/aowiYmJ/Pjjj6HbZWVl5OTk1FsWHx/f7G3Gx8dTXl5OYmIifr8fh8PR4BjABx98wDvvvMM777xD165dQ3lOH4QuKysLHVoSBOHid6DQytfbTnD90I5sP1RCstnA/7YWctuYbqhUSjyeABU2F12jY3C6POgjVASDAbqmmbBYXSjk8NthnTDoVE0/2SWqyZ/Ipw4RNbXsTEOHDmXz5s1YrdbQeMTgwYPJy8ujoKCAQCDA8uXLyczMbHbY4cOHs2TJEqD2cNCAAQNCh7JOWbt2Le+//z4ffvhhqBgAZGZmsmbNGlwuF1arlS1btjBkyJBmP7cgCOEtKEnoNAqMEUraJZqQyWQM6GomUq8lzqQhSBCjTo3T7UWukKOQSahkcjLaRdGtfRRDuydd1sUAmnGW0ZNPPhn6Ej7bsjMlJCTwyCOPcPvtt+Pz+Zg0aRIDBw7khRde4MEHH8Tj8TB8+PDQFNunDyo35uGHH+bxxx/n+uuvx2g08vLLLwOwbt260KDy66+/jsfjqdOz4bnnnqN3797k5OQwadIk/H4/Dz30EAkJCU29fEEQwkwwKFHj8uL2BvAHJIw6FW5vAIVcRq+MOIKAUafEFwgQDOpQyGvPJjJqVJijNOzLryQ9yUi0QY9Bp0QtV5DUIwKFuLYKmSSmLm02MYbQPOGYCUSulgrHXLvzKyitcKJRK9mbZ6Vr+2hOWGrokhpDhE5Gld2HOUqLFITKGjdOn0TXNBP+YACvV+JEmZ2KajdIEshg3LD2GJTqX50rHN+r8zqGIAiCEE62HrRQYXOjlMmxVLnQaZVU2d10T4/F5wuikCmJMijwB6Co3I5KqSA6Qo3HF8AfgBqHj0BAYufhcipq3FzZLR6fVxLfgqdp9K3o169fg2cAnTozaPv27a0aTBAE4XSlVjtGvRaZTIbWr6BdvBG1WoHF6sQQoeJEmQ2jXoPfH0SjViGX/FQ73Rh0SgJIGCKUlFcHGNQjEbfHhzlaR+RlPmZwpkYLwvLly4HaAnD//ffz9ttvX7BQgiAIZ4o1qVGrleg1StJidBRVezCqVUjAyTI7KWYjcrmEQqHAqFXi9srQy+W4PX5kCgmFXEZSbAQOVxC1OoLoCBUKmRg3OF2jBSElJSX0d7VaXee2IAjChZYQZ8Bu86NQKvD4/MRFalAq5cRFaTBGqDDq5FTa/Xh8fvRaOTqNArkk54r2UZRYHVQ7fWgUQVRGFXFGDYkx4XmhaVsSR88EQQhrkiTh8QdRIMPm8SPJoajMydW9k8kvrkKnUaGQB3B7fdQ43Xi9QcoqXBgilCjkcnp1jCXVHElqW7+Qi4AoCIIghC2vP8D/th7HGwjSOS2a5FgD3kCAWJOOwpIaPD4JKeAnSJBAUEKtVHK8xIpWrcZa4qL/FYlt/RIuKs1qoWmz2epNFy06pgmC0NoOFFbhcPvZeaSC9olG3G4fGpWcKIOGSpubaJOGgqIafP4AWrWChOgIZMRSZffQKTWKbmmiqVdLNFoQPvjgg9Dfk5KS6twWLTQFQbgQfIEAMlntgPC3O4sZ3i+ZgEzC7nYTbVRzsqSG6EgNlTUeLFVu7M4AaYl6kmIjSIrTEa2/9HoWtKZmFQRBEITWFgxKuL1+1ColSkXtKe9d06I5dqKG3hlx1Dg8eL0SvxmQitPuAaBLShT+QO1FZr5AEKVchkohzhw6V42+c6+++ipeb+M9Qj0eT5MdzwRBEM5GkiQKSu1s2V/Cko3HWLj2EBv3FOHz185ObNCqyBmWztW9Epk8IoNB3czodXWvLFYqZCjlMnQqhSgGv1Kjewj9+/fnxhtv5JprruHaa6+lXbt2SJJEYWEhGzZs4JtvvuHPf/7zhcwqCMIlxB3ws3VvGV9uKSDGpOVQYRXx0VpUCgW90mOJjaw93KNRKUiKiWjjtJeHRstpZmYmH330EVFRUbzwwgtkZWUxfvx4XnrpJUwmEx999BEjRow468bboqeyJEm8+OKLZGVlMW7cOLZt2xa6T/RUFoS25w8E+HzDMVZ9f5xDJ6oosTpxuHwkxERQ7fASF6UlMuLXzy8ktNxZTzvV6/Xcd9993HfffS3ecFv1VF69ejVHjx5l5cqVFBQUcP/997Ny5Ur27dsneioLQhj48XAFX27JZ+SAdqhVcmQyqLZ7iTKoGTO4HWMGpKFSikM/baHV3vXTeypHRETU66msVCpDPZWhdvrrU13YztZTOTs7G6jtqbxhwwZ8Ph/r1q3jySefBGD9+vWMGzcOuVxOeno6SUlJ7Nixo05P5djY2FBPZUEQWpfd7WN3npU9eVaOFlVTY/cQDEKVzYNeq2L04PYkm/VkpEUxrFcyKmXz21YK51erXZjWVj2VLRZLnS5sp3onWywW0VP5AgrHTCBytdSvyVXt8LBtfykrvsvD7vRRUuFgwBUJXN07mfTkSLYftNC1nYnrh6Xz++u7Y2jBYaJwfL/CMVNLtVpBaKueyg09r1wuFz2VL6BwzAQiV0v9mlxuX4D/rNiPQafiUGEVyXF6ghIcKqykc6qJe7K7k1dkI9qkoVuqCZfDg8vhafVcrSUcM7VaP4STJ0/yww8/4Pf7GTRoEO3bt29ynbbqqZyYmIjFYgndLi8vJz4+XvRUFoQL4HBRNXvzKomL0pJ3sppuHWKQy6DS5qFdgpHEOD19MmKJi9SRFC3OHAo3Tf5E/vbbb7nxxhv53//+x7p165g0aRJr165tcsNt1VM5MzOTZcuWEQgEKCgoID8/n169eomeyoLQik5WOPlubwmrthSwclMeTrcfjzdAcbmDa/qmkGLWk54cyY2ZHYmL1LV1XKERTe4hvPbaa/z3v/8lIyMDgMOHDzNjxgyuu+66s67XVj2Vs7Ky2LVrFzk5OUDt2IRWqxU9lQWhleSV1rBqcyEpCQY8viD+gMTSb4+Rk9mRXYfL8foCTLymI93bR7d1VKEJTfZUnjBhArm5uXWWZWdns2zZslYNFo7EGELzhGMmELla6my5PP4gDrcPa42bvGIbu45UEGlQ4vIEcHkC2J1eruqVyIh+qchloDmPZw6F4/sVjplaZQxBq9Wye/fu0Bk6u3fvRqcTu3yCcLk6Xm7ni/V5nCy306+LGTlBdBo5NQ4fHRKNaNQK4qN19OtkFtcTXGSaLAgzZsxg2rRptG/fHplMxrFjx3jttdcuRDZBEMLQ1gNl/HS49gSN0goHqYl6ks16ZDIZMZFaBnQ2o9OIVisXoyY/tQEDBrBixQp27txJMBikb9++REeLY4GCcLkIBIOUWF0oFXLio7TIkNCqFbi9AfKKbQzpnkiXdtFEGcR0Exe7JvfngsEgn3/+OStXrmTgwIF88sknBAKBC5FNEIQwcPhENVv3l7J5TzFFFU6u7BpPl3bRJMXquaJDNN3SRTG4VDS5h/DSSy9htVrZvXs3UHsaallZGbNmzWr1cIIgXHgymYzTzzVxuv2hvzvcPrqkRjF9Yk8cbh9GnUpMOX0JabIgbN68mS+++IIbbrgBg8HAu+++y4QJEy5ENkEQLqDyGjcrtxRQXOHkuitTyfp5KoaOKSZc3gBqlZy0+NqzVjRKORqDpi3jCq2gyYKgVCrrTPGgVqtRKsWAkSBcKrz+IDsOlbHtcBk/7q+9yv9QYSXtkk2YDWqi9Gqu7ima1V8Omvxm79KlCwsXLiQQCHDs2DHef/99unXrdiGyCYLQilzeACcsNvJKbBwvs1Fe5Q7dJ0lQ4/BiFmMDl5UmD/49+eST7N27l4qKCm699VYcDgdPPPHEhcgmCEIrCAQlym0ulm8uYPUPhVTZvdTYfbRPNHJqXsiu7aLpkhbVpjmFC6/JPQSDwcDs2bMvRBZBEFqZ1e7hyy0FqFUKSqwOTpY5SI03EhOpwev1M3F4J8wmLT07xBBj0oXd1bdC62q0IMycOfOsK86ZM+e8hxEE4fzz+gPsL6zC5fFjqXJxosxBstlAMCBhjFBTUe0mxaxHoZDRJS2a9vHh2fdDaH2NHjLq3LkznTt3xmazcfDgQbp27Ur37t3Jz89v9nUI59pTuaioiClTppCVlcX06dNxOBwA5Ofnc9ttt5Gdnc3UqVPJy8tr9Ln9fj8333wzixcvDi0TPZWFy4nXH2D7kTI++voIG3cWs3D1QUqtTrRqJSXlNmIidZj0KiINavp3iWfUlWmiGFzmGt1DuOuuuwD43//+x8KFC0PzF910003cfvvtTW741/RUfvrpp/nd737H9ddfz/z583nzzTeZMWMGM2fOZPLkydxwww389NNP/OlPf6o38d4p8+fPJz8/P3R7165doqeycFnZtL8EhVxBVY2b4goXLo8fnz9IZY0To16DSiFj6piumPTi9FGhVpODyhUVFajVv5xpIJPJqKysbHLD59pT2efzsXXrVsaMGQPADTfcEHrM/v37Q9Nl9+3bF4vFwvHjx+v0VAbYvn07Bw4c4Nprrw0tEz2VhctBfmkNizfm8e6XB6is8lBj9xBl1GLSq4nUa7A5vEyb2Itbr+vCxGs6imIg1NHkoPKQIUO45557GD9+PJIkkZuby4gRI5rc8Ln2VLZYLBgMhtC1DmazOfSY7t27s2LFCiZPnszmzZupqqqirKysTk9lu93OnDlzeOutt0L9Ek5t99f2VBaEcJZvqeG73SWs+/EEALeM6kJBcTVJcXp8vgBx0Trio3TEm3TI5efeula4dDVZEP72t7+xcOFC/ve//wEwduxYbrnlliY3fK49lRtadur2Cy+8wLPPPssHH3xAZmYm3bp1q9cx7emnn+b+++8nLi6uXp4ztbSnckvnFr9QwrG5dzhmgksvV2WNmx/2FlNR40KGHKfnl/G91VvymJCZwWdfHSYhVk9iTASjBrcnISGy1XO1tnDMFY6ZWqrRgmC32zEYDNjtdiZMmFBnuoqampomj72fa0/lmJgYbDYbgUAAhUJR5zF+v5/58+ejVqvx+Xx8/PHHpKam1sm8efNmDh06xLx58yguLmbLli0olcrz0lNZNMhpnnDMBJdWriq7h6JyB/klNvYcq8Bq8zC8fwoxkRrUSjlefxCHK0BqnIGn7x6Mw+0nPkqLWiFr9nNdSu9XawvHTOfSIKfRn8hTp04F4KqrrmLIkCGhP6duN+VceyqrVCoGDBjAypUrAViyZEnoMXPnzmXdunUAfPbZZ/Tq1avOVNwGg4GNGzeSm5sbOrT10EMPkZOTI3oqC0iShMvrJ9DCol5W7eKHAxaOldb9Dx8IBvnpWAU/HirD7fUjk4FMBsdKbGw9aMFS7Tqf8fEHgpyscLD9SBmfrj9GjduPxx/AHwxiqXTx9dZCkmL13HxdZyaPzGDm7QPomGQk2qAhNU6P+jx2LRMuTY3uIXzxxRcA7Nu3r8WHVuDX9VT++9//zuOPP85bb71FUlISr7zyCgCPPfYYf/3rX3njjTdISEgIXQtxek/lxoieysL2gxa27yshJlLL4O4JaFRn/4L0eP0cK7Gx6vtCnG4/EhKjBrZncDczEhKfb8hj1ZYCjBEq+nYxo9MoiI3UsSevgqoaDzGRWm7I7ERijJb1O4uxVLoY2D2Bzsm1h2xKrHbWbiuiyu4hs08KvTvGNJpFkiR2HiujxOrG6wuikEnIFRChVaDTqEmO1RMRoSJCq2Bod/HvWjg3TfZUzszMZNKkSUyaNInk5OQLlSssiUNGzROOmYKSxPpdJVTXuFAoZEQZtHRMjiQlTt/oOlsPlFJgcZBXVMP+fCsAQ3olce/1V1Dt8jHjjY34AxI9OsYCEkeOVzG0dxInSm1E6NS4PH56Z8TRIcHI0o3HADBHR3DP9VcgSfDlD8dZtvEYcpmMtAQDM27th1xWf7D3ZKWT3UfKMUfp2XGwlJR4A7sOl9M1PZoovZYqm5sdh8pINuu5ZWRnTBHnZ/6hcPwcITxzhWOm83rI6JT33nsPr9fLrbfeyt13382qVavw+/1NrSYIYUUuk9Eu0YBGrSC/xIbF6uDHA6U43L5G13F5Auh1SlTKX76kDbranWqVUk5c1M+9xSWJYCBApF6NSiEn2Wxgz9EKDhVWsedIOVq1AuXPe9lRBjWnfoIZIpSoVbXLYyK1nH7iT0Cqvajsq50n2X2knO92FSGXg8vrp7zaSc+MOGrsXmQyib6d43hwUi/uHNvtvBUD4fLU5FlGnTp14rHHHuPPf/4z3377LfPnz+eZZ55h06ZNFyKfIJw3A7snEaNX4w9IBAJB5DJ5vTPaTtcjPYaTFQ78/gCRERq0agVDeiZQaXNz4EQNY67qwI4DFvzBAIN6JqOSg1KloKTcicmgRiaTER2pJTk2gonDO1JR7eaK0yaMG9w1HpkMnO4A/TNigdosVQ4v2w+XccJiQ5IgUq+hpMJJfkkN/bvGsyfPSqDaTefkSIb0SGxwr0IQzkWzGhtUVFSwdOlSvvjiCyRJYvr06a2dSxDOO4VcRrRBw9W9kiipcGCO1hFxlmbwsZFaYiNrJ3rz+IMo5TLUSjkbdhdTXOFk79EKYkxaEkx6UmIjyEg2AeDp6KddggFrjYcr2kejVSvJSDaF7j9FrVIwrEdSncMNRRUODp+oxuHyEQyCUi7nQL6VMVd1YPXmfDomR/K7Md2IMmgwaBScKiKCcD40WRCmTZvGjh07GDVqFM8++yx9+vS5ELkE4bzx+ALszqtAcbSCDvEGTHoVJ8tgf34lgTSJxJiIeusEgxIHjldRVuUiLd5IWZWToCTRu1Mcbl8Qry9Apc3DcYsdtUpOhyRj6Atfo1TSt1NcvW2ejdPj48dDZSz7No/BvRJRyuVYKh1ckR6LTG6kxuFh+g29yUgxoT9LEROEX6PJf1kjRozgn//8J3p944NvghDOTpY5OFFqx2DQ4PP5aRdv5OjJKgB2Hi0nMSaN039p+wJBquxuDhVWIqO2j3CJ1UmkToUpQo1eq0SvVdE5LQqH20u3DrGUVbvYsKuI7ukxREeoqLB5MehUoT0QlzeAy+MnyqBCLqsdN6h2eSmpcHLC6iTvZDVHT9bgCwQBGV5vgN4ZZqrtXpLMEfTuEEeEVkmERonXH0CSaPIsKUFoqSYLwk033XQhcghCq4nQKVEqZJRWOPEZ1aQnRSKXyQhKEpERak4vBj8eKuOr7cfpmGRCLoP4uAiOnajmh70lmAwatBolKoWM5Dg9eq0Sty/AdzuLiYnUss1Zxne7ishIi8Lr9aPRqEiJ1dM1LYof9pfi9gZITzHRIcHAoRPVWG0evt9bgsXq5Df90zDqlCTG6TlRUkN8rB6DTk33DtHYnX427ipCrZTTMTmS9T8V4QsEGTekAx2Tmn/VsSA0peUXGAjCRSYxOoJIgwalQo7L46fS5uGavsn07xpP/y6/zLclk8GGn05isbrYsreEDkmRWMpdFBTbMEfriYvWUlBqw+UJUFxmJ8qgxu3xY4xQ4w8EKS53oFIqqHH4qHb4WLWlkI/WHmLbEQuWKhdqtYIfD5Tyw4Eydh0px+70kl9sw+kJUFRhI9akQ6tUEB2pwahT0S5eT2qsgbJKJwD+gMT+wioq7R7sLh8HC5ueZFIQWkIUBOGyYDbpiDFpkctk6DUqog0a2sUb6hx2kSRIjKk9NBqhUWLUq5EpIC4qgpIKB+VVLrq0i0Yul2GOjiDVbCQxJoJqu5voSA1xJi0qlYIoowaXN4AkSaTGGzhSWI3T7afS5qW43MnRk9UUVzgwGTWkxOtRKuRERmj5Td9kfjeqC/07J3DVFQm0izcil8tITzahkMswGTR0SIpEpVCgkMtINYfn3FrCxavJQ0avvvoqf/rTn+ose+6555g1a1ZrZRKE865LmonkBCNulw+dWs73+0tRKuT06FB7FtApYwalkZpgIM6oISMpEo8vgM8b5LqBaRgj1HRLi6K4wklkhIpogwqDVsVvf9OR8ko3yXERpMUb2ZtnpV28gT4ZcahUCr7beZKMtGiOnqhGAkoqnOh1Skqtdq7pnYzL66dzigkZstrZSE9d3/CzCK2SpFg9Oo2SmCgNPdJjCUhBEmN0CML51GhBeP3116mpqWHlypXY7fbQcp/Px8aNG0VBEC4qCrmcjDQTZWU2dhwup7i8tgufUaeq00w+NlJLZq+kX24bNVhtbjzeADV2N26vHzlQRO1gs9Xm4fDxak5Y7Hh8fgZ1T+Sb7SeZOq4rbm+ASqsHrVpFeaULp9uPSilDoYBUs4HoSC2bdxdj0KuxO31c0S6Ghi4p2J9fSUW1C6VCxtFi2JdXe9W0UiFjzMB2rfiuCZebRg8Z9enTh6ioKORyOVFRUaE/iYmJdfoMCMLFxuXzU1Bqo7TShUbdxFFTmQyfP0iVzUNQAoNORY3Th1otxxcIUmp1oZDLiDJoMOk1GPVqrumdhEImqy0iDi81Dg82h5f05Eg8viBKhZxu7aMJBoJIgNsTIDJC1WAxgNrrJ9y+AIWlDmxOH76AhATodaqGVxCEc9ToHsLw4cMZPnw4mZmZdZratMSyZct466238Pv93HHHHUyZMoVNmzYxZ84cPB4PY8eO5ZFHHqm3XlFRETNmzKCiooL09HRefvll9Ho9+fn5zJo1i+rqaqKionjmmWfqTWHtcDh44oknOHasdu6YadOmcf311wO1PZU/+eQTJEni0UcfZfTo0ef0uoSLl9cXwGJ1oVTKCQSD+Pxnn5vqRKmNCK2CGkftRWBqlZyYSA3Vdi/VDjcKpZJgMIg5SovH50ellJOaYCQYrB0ETkswUlzuwOn1U1blYPzQ9vTpFMeOQ2WARHSkFgkJ7VmuLai0efAHg+QVV3G1ORGtWo4/AA5P49NuCMK5aHJQOTExkfvuu48xY8ZQUVHB3XffjcViaXLDp3oqL1q0iCVLlvDxxx9z+PBhnnjiCd58801WrlzJnj17WL9+fb11T/VUXrVqFT179uTNN98EYObMmdxwww0sW7aMRx99tN7YBsDbb79NcnIyy5Yt4/3332fOnDmUl5fX6am8aNEiXnrpJaqqqpp+h4RLilwuw+sPUFHlprLGg81V/0vV7Q1g/3m5Wi3npMX+8699D0dPVGNz+Kh2egkE5MRH61Ao5EToVFQ7fPj8QQKBACfK7KSa9bi9Pob0SkSrVhIMQHGFE71WSaxJh9cfoLLGTZnVRWGJjcammay0uZEFoUOSEX9QxuHj1Rw9UcXR4zUEzz43pSC0SJMF4ZlnnuG6665Do9EQGRlJt27dmjV+0FY9lQcNGhTq5RAbG0tUVBTl5eWip7IAgFIhJ81sJC3RSLskAxpV3eM0FTVu1v14nG92nOD7AxacngDJ8UbkcjBEqFCpFMjkEoO7J6BQyHC6vCTHGWovZZCBVq3k6IkqkuP0lFgdmE06tBolOo0CCfD7g0gS7D5WjlqpRC6vPSQVCEogq/1yD0oSlionZdUuJKl2L0OugCuvSMDvD5JiNhBr0mKIUHOizHHh30ThktVkQTh58iQ33XQTcrkclUrFjBkzKC4ubnLDDfVUXrp0ab1lp/dUHjlyJJWVlU32VAbq9VQ+1Qvh6quvDk3TvXLlSrxeLxkZGVgsljrd2URP5cuXQaekstpFkcXBCYuzzn3lNW58gSAuT4DtByxU2jzoVEqCQYmSCgeV1S66to/F7ZPw+gJ4/RInyx3Iqb2OwesLoNNp2PDTSb7cVMhHaw8jR4bX50ejktf+opdBQamdIHDCYsfm9FFW5Ub6uc1rQWkNm/eW8q/cvby/+gBqhQy9Vo3DHaDK7kGrUmCOjqCyxoW/gdawgnCumjztVCaT1elHbLfbG+xPfKa26ql8ypdffsns2bP5z3/+g/Ln47xnEj2VW084ZoLaXO09AZLyK5HLQaNVEmHQsvtoOT5/kNQEI6WVbiptbizVLuJjdGjUcuxuH1qVgr5dzfj8AUrKaog16XC4PRi0CpRKBZERGiI0SuKitFTUuAgGJcxROnp2iSM2Skd5lYt+XeMxxxnpnGqCoMTgHglU2bxkpJkwm03I5TJ25VnZdbSCvKIaCopr6Nkpjn5dEzh6spIOSSa2VpUS9AXolBJJ326JrTqFRTh/juEmHDO1VJMFYfTo0Tz22GPYbDY++ugjPv30U8aOHdvkhtuip/IpH3zwAe+88w7vvPMOXbt2DeURPZUvjHDMBBAXZ6C83E6EUk63NBMVNR46J0Xyw54ivt9bglqlwO2MZcgVZr7ZVUTUz6eDdko10S7BiNPtx+n2YzJqQSZHIZeIj9Lj8QXQaZVoVDLKK53ERukY1C2eK7ua6dkhBqNSgTbeQHK0Dq0cyspsjBnUjh2Hy9BqlLRLgl4doqmoqD2926BVEKXXALXXIGiVctLiIojWKzlUVMOA7gl4vX46JkZSU+U820v+VcL1cwzHXOGYqVUa5EybNo3MzEx69erFpk2buPnmm/njH//Y5IbboqcywNq1a3n//ff58MMPQ8UAED2VL3MVNW5yvz3Kt7uLWbP1OB5fgGv7JZMcp6fU6qSowkFhiQ1LtYvXPt+F3enD7wvQtX00BwurkCSJyho3xeVOlLLaq4dPlDn5eN1hTpbaOFhQxb68SmRKOd/tLmbhmkP874fj2Jw+nB4/6386ydofj3PweDUAWpUClULG93tLWbkxn91Hf5mGIj0xkmF9kxg7pD2TR3amZ4fa1ppun8Seo1Zy1x9l1ZZClm/Op9LubZP3U7g0NWse3YkTJzJx4sQWbbiteiq//vrreDwepk2bFsry3HPPiZ7KlzGfP8gP+y2UVjpxe/2UV7mIidQQGaGhR3o0DrcPtVJBRmoUm/cUo1LIOJhv5Zp+qbh9AarsXlyeAL6ARECS+HTdEW4a1ZmCEhspcQZKq9xEaJQcLKwkyaynvNqNPyBRXuWm0GJHq1aGzloqLK3hivZReLwBjhTVkFdcjUwm4/t9JYzsn4pcXnuItF+nOPqdMYV2RY2LojI7Xl/t4c8ah4+yaifRBtElTTg/muyp3KNHj3rH37VaLV26dGH27Nl06tSpVQOGE3HIqHnCLVN+cQ3bDpVxosxOpEGDy+OnpMLB1b2SGTUglY27S1jzfQE9O8ZQ7fQRY9RwoKCSYX1TCAaDFJbYsDl9yGQyUuMNdEmNxFrj5vBJG/5AkNIKB0EpiFGvIdVsoLjCyf58KwkxEdw+phvJcRFs2lOCzeHlig4xdE2LwuML8NWO42zaXUpFtZtrr0xh8vCMs76O8ho3KzYXcKCgEo83QEKsjvtyehD98+Gl8y3cPsdTwjFXOGY6l0NGTe4h3H777ej1eqZOnYpcLufTTz/l2LFjDB8+nH/84x988MEH5xxYEC4EpVKBSinjivRYtCo5Kzflo1DIOVRYyVU9Ehh0hRmlQsLuDqBQKSipcGIyqLBUOTHp1aQlRuLx+THo1AzsYiZCo0Qmgz4ZXvbmW4mMUBMMBkiMiaBnp1gKS2306RxHapyeTsm101Nn9knG5w+iU9cOANeerAFp8Xo6ppjQqeWAxNk6oMVFarm2XwoxRg2BoET/ruZWKwbC5anJgvD999+zePHi0O277rqLSZMm8dxzz/HGG2+0ajhBOB+iI9V0TDYRFalDLpNIT46k0uYh1axnb56V8ho3dqeP46U1RGhrG+DszasmGICo9FgKiqvxByT8/iDt4vQ4PH6KyuxkpJoY0j2RDolOTpTZMUfpiDdFEG+q34FNpZCjUvwyZKdWyjFEqCkosaPTKNGpTE2Ug1rt4g20iw/Ps92Ei1+TBcHlctU5h99iseDxeAAIBAKtm04QfiWX18/GncW4PH46pMrokx7NbzM7UV7twu0NsPVAKaVWN7EmLWqVAr8/ADIl3dpFkRCnJ0KjRKNWcvx4FYkxEewvqKyd4E4mY/fRClLjjCTFRJB0RhtOmYxGrzw+5cquZoIBCW9AolfHGGSiP7LQxposCPfeey+//e1vGTZsGJIksWnTJmbOnMkbb7xB//79L0RGQThnTrcfl8dPpEFDXnE1Ho+fnw7VXoHcITkSh8uPQaeiqsZNstmAQa/CZvfSOS2G9klGZEjYXV4KVXICQYlIfe0kdB5vgGijlh8OlBIISvTOiCNaryYQDLKvoJK8Yhs+f4Ae6bG4PX70OhWdko2h9pkABo2Ka/ulNOv4c1CSyCu2UV7t4vCJauQy+E3/VJIb6ActCOeqyYKQmZlJnz59+Pbbb1EqlfzhD3+gQ4cOnDhxgsTExAuRURDOWZRBTcdUE599dYRr+iWzaXcxNqeP/OIa4qMjMBnUON0B4pMi6ZEeizFCwdGTNezLt1Jld6FSKNhxpJz4KB1xJi0dU0yYIjRU2T1U2twcOVF7GmleUTXRnc1YbV4KS2x8t6sIuQxOWhwkx+lRKmQYdKp6exLNVVblYs+xcqrsHlzeAP5AkJ1Hykge1P58vl3CZa7JgnDbbbexatWqemcTNXRBmCC0pUq7B7lMhkl/+mmYEsGgxIkyB15fEJ8/iPfnWUm/3n6c27OuQC6HNLOBDolG1vxQiMPlo8bhoWNKJF9tO06ERsWuoxVc0ycJU0TtGINeq6wdA6a2IBgjap8zQqtEoZChkMuQy2WoVPLQtNbyJo4IVTm85BfXYNSrSU80Ij/tin2FQo4kQXKcni+3FOLxBrBUuhh8RSIxRjGwLJwfTRaElJQUtm/fTt++fVs81YMgXCiFpXa2H7IgAwZ2TyAxRsfBwir2F1aiViuJNWnxeAKkxhs5fMJP57QokuP0XNnFXPvlTu0x/5R4I8eKqkmOM6BWKYiP1uN0e+nVMZZhvZLRa3+ZKiU5LoKreycRCEihLmd6jZIhPZKINmpxuHx0So3C5fah16nqdUKzu31YKl2grD3zaOfhciptbgAMWiUJ0b/sTcRFahnYLQG724c5SofbW3uoS8x2KpxPTRaEo0eP8rvf/Q6lUolarQ7NNbR9+/YLkU8QmsVqc9cO5AJVNje7j1VQXu2mrNJFpd3Dtf1T8AeCqJHRJ8OMXqviml4JddpnAnRrF0Wq2YBWJUOukBMbqeXkz1NZ1x84lmE21W9jadKrGXzF2S96DAQltuwpwe7yUWBxMKSbGYXilz0CeQO7Eynm2n7PN/6mE4dPVNMuwUBcpLa5b5EgNKnJgrBw4cILkUMQfh25jO2HyoiLikCpUGCpcuB0+YjUq5GQcbSohv5dzPTvHIdO3fg/e7lMRmTEL3sBfTrG0is9ps7hm/MhEJRwuv0A+ANBPIEgfTvHUVhix6hXnfWLvktqFF1So85rHkGAZh4y2rdvH06nE0mSCAQCFBYWctNNN12IfILQJJvLx9tL9pBiNrDnWAVVDjfd2sWglMuRK6FzdCSdUkwM65cWmkCuJc53MYDa6xD6d43nuMVGx7RoInUqZDIZ3TtEN72yILSSJgvCrFmzWLduHR6Ph/j4eAoLC7nyyitFQRDCQonVSaHFXtvQ3uZBpZRTUeVBm6GgU0okiTERJMfUHmpp6DBMW0o160k168Ny2gPh8tTkKPGmTZtYt24do0aN4u233+a9995Dq23ecctly5Yxbtw4Ro8eHTr0tGnTJrKzsxk9ejRz585tcL2ioiKmTJlCVlYW06dPx+Go7QqVn5/PbbfdRnZ2NlOnTiUvL6/eupIk8eKLL5KVlcW4cePYtm1b6L53332XrKwsxowZw5o1a5r1GoRwJrHraDkVVS6G90vBWuPGoFOR2S+Za/sm0z/DHCoGgiA0rcmCYDabiYiIoGPHjhw6dIjBgwc3q9NYW/VUXr16NUePHmXlypXMnz+fmTNn4vf7RU/li57EoRPVfLevhNVbC9l2yILHG8AYocbjC5Acq+OPN/bmtjHdyBnaAYNOzAAqCC3VZEFQqVRs3bqVTp06sWHDBmw2G05n00052qqn8vr16xk3bhxyuZz09HSSkpLYsWOH6Kl8kdtxuIIVm/P4atsJvlh/jB/2Wyiw2Onf2Uy/Lmau7JrAlZ3j6NkhGqU4PVoQzkmT/3NmzJjBRx99xPDhwzlw4ABXXXUVOTk5TW64rXoqN9Y7WfRUvvgUVTj5fn8ph4tqrxx2ewP4fEG8/iBlVS50GiUatYL2CUZxcZYgnAfN6qn8z3/+E4BPPvkEm83G7t27m9xwW/VUbuh55XK56Kl8gf3aTNsOlPDe8n1U1ngwRqjo2TEOg06NxVpFuwQjmX1T6dstscUDxeH4XoHI1VLhmCscM7VUowVh3759SJLEX//6V/75z3+GvtD9fj//+Mc/mhyUbaueyomJiVgsltDt8vJy4uPjRU/lC+hcMklSbTcyJImdxyo4eLwGrzdIjcNLjcPL1b2SCEo60uINJMTU9ixu6Smk4fhegcjVUuGYKxwzndcGOR9++CHfffcdFouFBx544JcVlEpGjRrV5IaHDh3KvHnzsFqt6HQ61qxZw6xZs/j0008pKCggNTWV5cuXc+ONN9ZZ7/SeytnZ2fV6Ko8bN46xY8c22lM5MzOTzz//nPHjx3PixAny8/Pp1asXGo2Gp556ijvvvBOXy8WWLVt4+OGHW/RmCa3D6fbz3b4SKm1ufP4gJy12MtKiUSl/mQdIppAzaXhHZBIolWKMQBBaQ5MtNOfOncsjjzxyThtftmwZ//73v0M9le+99142b97MnDlzQj2VZ86ciUwmq9NT+eTJkzz++ONUVFSEeiqbTCYKCgr461//is1mC/VUTkhIqNNTWZIkXnrpJTZs2ADUnpk0bNgwoPa0088//xy/38/06dNb3Cda7CE0T0sz/XDQ8vM8Pl6UCjh2sopBVyRgitTicgcwR2m5ulcSWpXigua6UESulgnHXOGY6Vz2EJosCMIvREFonuZkkiSJ0koXSoWMHw5ZKClzUeXwcCDfSt8ucSTF6bnqigSSzuN1BOH4XoHI1VLhmCscM7VKT2VBOF+8gSC78yootTqpqHRjqXKRnmQkIU5P/kkbKXERyKTaqaSv65camlJaEIQLQxQEoVWV21ycLLXjC0o4PAGsVW6OnKyiyu6lpNyBSimnZ8dYBnZP4ITFzlW9EunXKbbeLKSCILQ+8b9OaDUOj5ficgdqrQK3PUBxuQMZ4PEFQYIYkxaTUU1KnIEuWiUDu5ib3KYgCK2nyYKwdu1aZs+eTXV1NZIkiX4IQrPlldjRaJQEgWDQR5RBQyAYICVOj6XKSUykkZFXpoQa1AiC0Laa/J/4//7f/+Pxxx+ne/fu9S4YE4Qz2V1+vlt/BIfTS0ZaFIGghMflQ6tRUl7jQqtR0iE5krREA93bR4vJ5wQhjDRZECIjIxk9evSFyCJc5Crtbj7+6ig/7KudauShm3phjFDh8vpRyuWYI3VUOX0o5RJmk04UA0EIM01e4dOnT58GZyQVhNNZbW7+9+NJdh4pDy373/cn8PqCmIxqAgTRaGW0T4ygR4do+nSMbcO0giA0pMk9hPXr1/Pf//4XlUqFSqUSYwhCHTanF7cvwIlyB8dOVNIpxcS+PCsAVQ4PqWYjKoUcjUqODHHIURDCWZMF4f33378AMYSLRY3Ty94CKw63n2iDmpMWB8GgRLtEIwmxelRKOenJHYjQKOnf2YxRq2p6o4IghIVGC8LmzZsZMmQIe/fubfD+lJSUVgslhKcqh4fvdpdQ7fSyeVcxibERREaoSYs34HL7yR6Wjt3po2+3RKoqHW0dVxCEFmq0IKxYsYIhQ4bwwQcf1LtPJpOJgebLiMsbwObysa/Aitvrp7LKjcPtp9LmJcqoRatW0inFRJxRS5xRi0pMPicIF6VGC8Jzzz0H0GBBaK5ly5bx1ltv4ff7ueOOO5gyZQqbNm0KTW43duzYBifOKyoqYsaMGVRUVJCens7LL7+MXq+nurqaxx57jNLSUtRqNc8++yxXXHFFg8/t9/uZMmUKN998MzfccANQO7ndJ598giRJPProo6KoNcPhk9UsWLqP8moXt43thlKhID42gki9GrkMurWLYkS/VMQZyYJw8Wu1n3Kt0VP5vffeo0uXLixdupQ//OEPPPPMM40+//z588nPzw/dFj2Vm8/t9bN2+0lyvzvGhp3FlFe7ANh5yEKkQUGMQcOowWlcNzCVQd3iRTEQhEtEqxWE1uipHAwGcThqj027XC60Wi1AnZ7KANu3b+fAgQNce+21oWWip3LzBIISa7adYNGagxwsrOb0E4N2H7USbdDRtX00A7vFM3pAOzEBnSBcQlptzoCGeiovWLCA3r1711l2ek/lU+s11lP5rrvu4uabb2bYsGE4HA7effddAEaOHMnIkSMBsNvtzJkzh7feeouXX365Tp5evXqFboueynUFghKWKiff7iym0u4FoMrmqb2qON7AcYudob2T6JoahU4jppoQhEtRs/5nr1q1iv379zNt2jTWrVvH+PHjm1ynNXoqP/vss0yZMoXbb7+dHTt28Mgjj7BixQr0+l+ueH366ae5//77iYuLq5fnTJd7T2VJkjhQWMmx41a+21WCRq2g2u7hivTai8ZKrE72HKlg2o29SIjRE2vSolI2r0lNuPaXFblaRuRqvnDM1FJNFoS3336b7777jpKSEn7/+9/zxhtvUFBQwB//+MezrtcaPZXXrVsXGjfo168fsbGxHD16NLTXYbfb2bx5M4cOHWLevHkUFxezZcsWlEql6KncgLzian44UEqN08/uoxX0zoilvMpFVZWd27K64vMF6dkxhuQoHQSDVFU6Wz1TaxK5Wkbkar5wzHQuDXKa/Im8YsUKFixYgE6nIzo6mk8++YTly5c3ueGhQ4eyefNmrFYrLpeLNWvWMHjwYPLy8igoKCAQCLB8+fJQv+RTTu+pDNTpqdytWzfWrl0LQH5+PhaLpc6XusFgYOPGjeTm5pKbm8uIESN46KGHyMnJITMzkzVr1uByubBarWzZsoUhQ4Y0/526JEjsKazkm51FrN9ZxMkKB9ZqL1q1Eo1Kwb68SkYPTuOavu0Y3juJMQPTSIkV8w0JwuWiyT0EpVKJWv3LwGFkZGTo+P7ZJCQk8Mgjj3D77beHeioPHDiQF154gQcffDDUUzkrKwugTk/lv//97zz++OO89dZboZ7KAC+88AJPPfUUCxYsQK1W8+KLL2I0Guv0VG5M7969ycnJYdKkSfj9fh566CESEhKafB2Xku/2llJl87Dux+PYnD5yhnVAJge1WsaIAanodSqG9UpErxEDxYJwOWqyp/IDDzzApEmTeO211/j4449555132LlzJ//6178uVMawcbEeMnK6fRRZXWzcXUyERsmqLQUAdEqJZPK1naio8dItzUS0UXvBMrUFkatlRK7mC8dMrdJT+W9/+xt/+ctfOHjwIH379qVPnz51zt4RwpPXH6TY6qDa4WVfnhW3x4/JqMWgU9K9QwzWGhfdOsTQJTW6raMKghAmmiwICQkJ/N///R8ul4tAIIDBEJ5n2gi/cLi9fPn9cfbmW/F6AySbDdgcHlLiDbi9Afp1jUMpl9Gvs2hZKQjCL5osCGVlZXzxxRf1rur9y1/+0lqZhHPkDwbJL7GRX2onv9jG8RIbKfFGKqqcdGkfTXyUjp7pMSgUcgivI1+CIISBJgvC9OnTSUxMJC0t7ULkEc6BPxBg+9EKjp2o5kC+lSuvSEClkqNSKiivcjGkZwLjh6ZjOHVBmSgGgiA0oMmC4PP5eOONNy5EFqEFAkGJglI7+49XUVTmYH9+OU53kAqbh/ziajJSotCqFKjVCq7pk/JLMRAEQWhEk98SPXr04NChQ3Tp0uVC5BGaIEkSLl+AzXtL+G5XMS5PgK7tTHj8EkEk0hMj0WlUdG8fzbir2okuZYIgNFuTBaF///5MnDgRs9lc5/qDdevWtWowoa6gFKS40sXX206i1yopq3ZRVunC5w/i8uiJjtSgV6lon2ykb6dYtGqxRyAIQss0+a3xzjvv8PLLL9OuXbsLkUdoQHGlk+/3lyBHjqXKhValQKGQERulo7DERn6JjTvGXEG39ibkMtGcRhCEc9NkQYiMjGTcuHEXIovQgKAUZE9eJX5/EJkMAoEgP+VbueE3naiye+iYEkmfjDi6thPFQBCEX6fJgnDVVVfx4osvMnr06DpTWPTo0aNVg13OJEnicFEV+SV2DDoVHm8AhVyORq0kNlJLIMXE7qMVTL42g27psXhdvraOLAjCJaDJgrBs2TIAVq9eHVomk8nEGEILeX0BfjxUTpXdQ8/0aNrFNzxVbjAo8fWuIvYcLWfn4Qo6pZoYM7Ad2w6WEmvSkWLW07ldFJ1TokiM1mEyaCkTBUEQhPOgyYLw1VdfnfPG26KnssPh4IknnuDYsWMATJs2jeuvvx5ou57KewutHCyoZs33BXj9QX7cb+T+CT1JiNbVe+zhomryi6qx1ngAyC+qodzmJrNfCuVVHmKMGrqmmVAqxOEhQRDOr0YLwoIFC7j33nt57rnnGrx/1qxZZ93wqZ7KixcvRq1Wc8sttzBo0CCeeOIJPvjgA5KSkrj//vtZv349w4cPr7PuqZ7K119/PfPnz+fNN99kxowZoZ7KCxYs4KuvvuKZZ57hww8/rLPu22+/TXJyMq+99hoVFRVMmDCBwYMHU1RUFOqpbLfbufnmmxk0aBBRUVHNfKtapsrhYX9hFf5AgMISO5V2D15/bZOeKrsXS6WzwYJgrXYTkCRSzAaUcjlGvYrOKZF0SjKBuDZQEIRW1OjPTKOx9pBGVFRUg3+a0lY9lQcNGsTUqVMBiI2NJSoqivLy8gvSU9kXCFJYbue7vaV88W0+Jyx28ovtWKvdxJm0JMREYNCpiI3SYo6qXwwAureLJiPZhF6roHOaiZEDUmuLgSAIQitrdA/h448/5pZbbuGBBx44pw23VU/lq6++OrT9lStX4vV6ycjIYNGiRa3aU7na4WFfYRV5xTY0KgXbDpQyuEc8x0sd9MmIo7jCQf9ute/HlZ3jSYyJaHA7JqOGEf1SkEBcVCYIwgXVaEFook1Ck9qqp/IpX375JbNnz+Y///kPSqWyVXsqF5fbOXSyBpvLx4F8K1d0iCEuSkdphYv05EiqHG6G9EoiIcZAekpkoxeNOVxejpfUUFHtplNaFInNnMs8HHu5hmMmELlaSuRqvnDM1FKNFgSPx8O+ffsaLQxNnXbaFj2VT/nggw945513eOedd+jatWsoT2v1VP5ycwGJcRHU2Dy0TzTy7U8nGTe0A3nFNorKnYwe1I4e7Wr7DtiqXZzZRsPh8bPrWDnHS2uwOQP8sK+ElDgD03/bE7Op4UNLp4RjY45wzAQiV0uJXM0XjpnOa4Oc48eP8+CDDzZYEJpz2unQoUOZN28eVqsVnU7HmjVrmDVrFp9++ikFBQWkpqayfPlybrzxxjrrnd5TOTs7u8GeyhMmTGiwpzLA2rVref/99/nwww9JSkoKLc/MzOSpp57izjvvxOVysWXLFh5++OGm36FmkMlg+0ELfTubiXZ40WmUFFc4ubp3IldmxHG2na2KGidrfjiBSq1Ap9Xw06FifH6JwlIbh09WN1kQBEEQzpdGC0JGRgZLliw55w23VU/l119/HY/Hw7Rp00JZnnvuuVbtqdytXRRHTlSzbV8JIwe1IyE2gtRYPVEGTaPF4ES5g7wSG3qdErvHj1Eux+V206V9NFV2DylmA+0buVZBEAShNTTaU3nixIm/qiBcis7WU7nYasfhDpIYrcWga7xJfVCS+PFQOf+3cj+d00z072KmoNROQkwER45XEalXYY6OID05ki7JTZ9dFI67quGYCUSulhK5mi8cM53XQ0YDBgz41YEuJ0kxzXvjdx2z8sO+Ujy+AIFA7TUJKWY9brefPp1jiTbq6JwSiUpceCYIwgXWaEFo6sIzAarsHo4W2zhhsdMxOZKeHaLrnSF1ptJKF0qlPLT+kZNVDOgaT0aaiTSzAZ2YtloQhDYivn3OUX6pjeWb8iirdHHc4iA+Wscfb+hFmvnsewoZKZEs/fYoQ3om4fL46ZQSyaArEtCqFBcouSAIQsNEQWghp8eP3eXjh32luDx+PD9PR+Fw+/D6Ak2u3ykpksd+15/jpXaS4/RkJEe2dmRBEIRmEQWhBaodXjbsOFk74YdMRkGJnX5d44kz6eiUYqJ9QvPGEdITjKQniDOIBEEIL2LksgXKqp34AkEC/iAJMTqu7pXEkeNVdEgwMHpAKkqFOOwjCMLFS+whtECJ1YUhQoXT7Scj2cTw3sn87rouv3qaD0EQhHAgCkIL2Bw+rrsylaAkhU4LFcVAEIRLhSgILdCncxwKuQyFmIVUEIRLkBhDaIHkRqasFgRBuBSIgiAIgiAAoiAIgiAIP2vVgrBs2TLGjRvH6NGjWbhwIVDbWjM7O5vRo0czd+7cBtcrKipiypQpZGVlMX369FDbzOrqau69997QrKX79++vt64kSbz44otkZWUxbtw4tm3bFrrv3XffJSsrizFjxrBmzZpWeMWCIAgXr1YrCKWlpcydO5dFixaxZMkSPv74Yw4fPswTTzzBm2++ycqVK9mzZw/r16+vt+7TTz/N7373O1atWkXPnj158803AXjvvffo0qULS5cu5Q9/+EOoWc7pVq9ezdGjR1m5ciXz589n5syZ+P1+du3axdKlS8nNzWXRokW89NJLVFVVtdbLFwRBuOi02llGmzZt4qqrriIqKgqAMWPGsHr1atq3b09aWhoA2dnZrFq1iuHDh4f6IWRmZrJ161bmz58PwA033MBtt93GjBkzCAaDob0Fl8uFVqsFqNMPYf369YwbNw65XE56ejpJSUns2LGD77//nlGjRqHRaNBoNAwaNIhvvvmGiRMnNvs1yeXheXZROOYKx0wgcrWUyNV84ZbpXPK0WkGwWCyYzebQ7fj4eBYsWFCn3WV8fDylpaUAPP/886H1DAYDSmVtNLPZHHrMXXfdxc0338ywYcNwOBy8++67AIwcOZKRI0eG1j+9LafZbKakpASLxUKvXr3qLW+J6Oj6vZvDQUvnPL8QwjETiFwtJXI1XzhmaqlWO2QUDAbrTAV96gKuM5edOV10Q8tO3X722WeZMmUKGzdu5N133+WRRx4J7TGc7XnlcjnBYLBeRrlcjKkLgiCc0mrfiA01tc/Jyam37PRf8wAxMTHYbDYCgUC9x6xbty7Ug7lfv37ExsZy9OjRes9rsVhCt8vLy4mPj28wz5nPLQiCcDlrtYIwdOhQNm/ejNVqxeVysWbNGgYPHkxeXh4FBQUEAgGWL19OZmZmnfVUKhUDBgxg5cqVACxZsiT0mG7durF27VoA8vPzsVgspKen11k/MzOTZcuWEQgEKCgoID8/n169epGZmcmaNWtwuVxYrVa2bNnCkCFDWuvlC4IgXHQa7al8Pixbtox///vf+Hw+Jk2axL333svmzZuZM2cOHo+H4cOHM3PmTGQyWWhQeeTIkZw8eZLHH3+ciooKkpKSeOWVVzCZTOTn5/PUU09htVpRq9U89thjDB06tM6gsiRJvPTSS2zYsAGAmTNnMmzYMKD2tNPPP/8cv9/P9OnTWzSgLAiCcKlr1YIgCIIgXDzEqKogCIIAiIIgCIIg/EwUBEEQBAEQBUEQBEH4mSgIgiAIAiAKgiAIgvAz0UKzATU1NXz99deUlpYik8mIj49nyJAhbX5ls8h18ecKx0wil8h1ithDOMP//vc/brzxRrZu3YrT6cRut/PDDz9w6623smzZMpFL5LqkMolcIlcdklDHmDFjpIqKinrLKyoqpKysrDZIVEvkaplwzBWOmSRJ5GqpSzmX2EM4g0wmw2g01luu1+tRKBRtkKiWyNUy4ZgrHDOByNVSl3IuMYZwhsmTJ3PzzTczatQozGYzMpmMsrIy1qxZw6RJk0QukeuSyiRyiVynE3MZNWDXrl1s2LABi8WCJEkkJCSQmZlZp7lPW9i9ezfr168XuZopHD/HcH2vwjVXOH6GEL7v16/NJQpCA4LBINu3b68zUt+7d2/UanWb5rJarZSVldG5c+c6zX327t1Ljx492jBZXcuXL2f8+PFtHSMsP0fxGbZMOH6GcOl+juKQ0Rm2b9/OzJkzSU5OJi4uDkmSKC8vp6CggNmzZ7dZD4WVK1cyZ84coqKi8Hq9zJs3jy5dugAwa9YsvvjiizbJtWTJknrLXn/9dfx+P0CbTTEejp+j+AxbJhw/Q7i0P0dREM7w1FNP8e9//5sOHTrUWV5QUMADDzzQZqeV/etf/yI3N5eYmBhWrlzJ3XffzXvvvUdGRgZtuZP30UcfkZ+fz7XXXhta5nA4+P7774G2+zIJx89RfIYtE46fIVzan6MoCGcIBAL1/gECpKWltemHDbXtRQHGjRuHTCbjvvvu48MPP6zXg/pCWrhwIW+88QaHDh3i2WefJSYmhokTJzJnzpw2ywTh+zmKz7D5wvUzhEv3cxQF4Qy/+c1vmDZtGuPGjaszUr9s2bJ67T4vpI4dO/LSSy9x++23k5iYyNixYykvL2fKlCl4PJ42y6VQKHj44YfZvn0706dP5/7772/T/xSnhOPnKD7DlgnHzxAu7c9RDCo3YPXq1XzzzTd1RuqHDx9OVlZWm2VyOp28/fbbDB48uM6x07Vr1zJv3jxyc3PbLNspdrudZ555hi1btoRamLalcPscxWfYcuH2GcKl/TmKgiCcdw6HA71e39YxhF9BfIaXhpZ+juJK5Ub87W9/a9ayC+1iyHXqH2C45TrbsgspHDOdmUF8hk27GHK19HMUBaERp4/Un23ZhSZytUw45grHTI1lELkadynmEoeMGhEIBLBarcjlcqKiotp0jpLTiVyCILQWsYdwhoqKCh555BEGDRrE5MmT+e1vf8vgwYOZNm0aRUVFItdFkku4+B04cIAJEyYwePBgnnzySex2e+i+3/72tyJXK+QSewhnmDp1KpMmTWL8+PGhX7mBQIAVK1bw0UcfsWjRIpHrIsg1c+bMs97fFufYh2MmCN9ct9xyC3/605/o2rUrr732Grt27eKDDz5Ar9czceLEBq/MFbl+XS6xh3CGiooKJkyYUOeQh0KhICcnh5qaGpHrIsnVv39/Vq9eTZ8+fRg0aFC9PyJT+Odyu91cddVVREdH849//IPBgwczffp0fD5fm2W61HOJC9POkJaWxoIFC8jJycFsNgNQVlZGbm4uaWlpItdFkmvy5MkUFBRw4sQJHnvssTbLcbpwzAThm8tgMLBhwwauueYaZDIZf/3rX3n00Ud58MEHcblcIldr5GphU55LXk1NjfTMM89II0aMkHr27Cn16NFDGjFihPTMM89IVVVVItdFkkuSJMnj8UgbN25s0wxnCsdMkhSeuY4cOSLdeuut0hdffBFa5vf7peeee07q3r27yNUKucQYgiAIFx2r1RqaTyicXOy5xCGjM7hcLubPn8/q1aspKSlBLpcTHx9PZmYmf/rTnxpsUSdyhW+uVatWUVpaGha5wjFTuOd68803+fLLLxvM1VYu5VxiD+EMf/zjH+nRowc33HBDnWPiX3zxBdu3b2fBggUi10Wca8mSJWzbtq1NcoVjposxV7j+27okcrXCoayL2tixYxu97/rrr7+ASeoSuVomHHOFYyZJErla6lLOJU47PUNMTAxffvklwWAwtEySJFasWEF0dLTIJXJdUplELpHrdOKQ0RmKi4t5+umn2bp1K0ajEZlMhs1mY8CAATz11FMkJyeLXCLXJZNJ5BK5TicKQiP8fj+VlZUEg0FiY2NRKsNj/F3kaplwzBWOmUDkaqlLMZc4ZNSIb7/9FrPZTEJCQugN/frrr9s4lcjVUuGYKxwzgcjVUpdiLlEQGrFu3bpmLbvQRK6WCcdc4ZipsQwiV+MuxVzikJEgCIIAiAvTGvTtt9+yatWqehdajRkzRuQSuS65TCKXyHWK2EM4w6lpY3NycoiPj0eSJMrKyli+fDkZGRn89a9/FblErksmk8glctXRsksfLn2jR4+WAoFAveV+v1/Kyspqg0S1RK6WCcdc4ZhJkkSulrqUc4lB5TNoNBpKSkrqLS8qKkKtVrdBoloiV8uEY65wzAQiV0tdyrnEGMIZHn/8caZMmUKHDh0wm83IZDLKysrIy8trs85RItelkSscM4lcItfpxBhCA44cOcKqVatYtmwZADk5OQwePJgBAwaIXCLXJZdJ5BK5ThEF4QyLFi3ik08+YcyYMcTFxQG1MwauWbOGnJwc7rrrLpFL5LpkMolcIlcd53NQ41IwevRoyel01lvudDqlMWPGtEGiWiJXy4RjrnDMJEkiV0tdyrnEoPIZlEolfr+/3nK3241KpWqDRLVErpYJx1zhmAlErpa6lHOJQeUzTJs2jYkTJzJkyJDQwIzFYmHLli088sgjIpfIdUllErlErtOJMYQGlJaWsnnzZiwWC8FgkMTERIYMGUJCQoLIJXJdcplELpHrFFEQBEEQBEDMdioIgiD8TBQEQRAEARAFQTiPnnvuOSZMmMCECRPo2bMnY8aMCd1etGgRb7/9dqs875NPPsmmTZtaZdvh5LXXXmPJkiX1llutVrp27Xpen8tut3P33XfjdrtZvHgx999/f73HTJ06lVWrVtVbPm/ePLp27crnn39eZ7nT6aRfv34Nbgvgp59+YurUqWRnZzN+/HjuueceDh8+HMpzzz334Ha7z8OrExojzjISzptZs2aF/j5ixAhefvllevXq1erP+/zzz7f6c4SDhx9++II918svv8zkyZPRarXntH5ycjK5ubnceOONoWVr1qwhIiKiwcd7vV7uv/9+3n33XXr06AFAbm4u9957L+vWrcNgMDB+/Hhee+21NptN9HIgCoJwQcybN4/KykqeeuopRowYwfjx49myZQvV1dXcc889bN++nb1796JUKnnrrbdISEigtLSUZ555huLiYnw+H9dffz3Tpk2rt+2pU6cyZcoUevbsye9//3uGDx/Ozp07qampYcaMGYwaNarO4/1+P88++yzbt29HpVKRmprKnDlz0Ov1rF27ljfeeINgMIher2fmzJn07t27Tv4zX8/UqVMxmUwcO3aMW2+9laysLP7+979z7Ngx5HI5t9xyC7fffjs2m43nn3+eQ4cO4fP5GDJkCH/5y1/q9Ly12WwMHz6c1atXYzabAZg8eTIPPPAAX375JZ07d+buu+9mzZo1zJ07F51OR8+ePeu8vk8//ZQPP/yQYDBIVFQUf/vb3+jUqRM2m42nn36aAwcOIJPJuOaaa/jzn/9cr+ducXExX3/9dZ0C35TXXnsN+KVoXXPNNaxdu5aSkhISExMB+OKLL8jJyeHYsWMA7N69m1mzZpGbm4vL5cJms+F0OkPbzMnJwWAwEAgEUCgUjB07lpdffpm77747dCWucH6JQ0ZCm/B4PHzyySc8/PDDPPXUU9xxxx0sXbqUpKQkvvjiCwBmzJjBjTfeyOLFi/nss8/YtGkTK1euPOt2jx8/zrBhw/jss8949NFHmT17dr3H/PTTT/zwww8sXbqUxYsXk5aWxsGDBzl69Ch///vfmTdvHkuXLuWhhx7iD3/4A3a7vcnXExkZycqVK5k6dSpPP/00HTp0YNWqVXz88cd88sknFBQUMHv2bHr06MHixYtZsmQJlZWVvPfee3W2YzQaGTVqFEuXLgXg6NGjlJeXc80114QeU15ezhNPPMG8efNYvHgxKSkpoft++OEHlixZwsKFC1myZAn33HMPDzzwAFB7SC8qKoply5bx+eefc/DgQd599916r2XdunUMGTKkTqH48ccfQ4f/Tv3Zs2dP6P6HH364zh6MUqlk7NixoddRVFSEw+Ggc+fOocf06tWL3NxcAEwmEzNmzOCee+5h5MiRzJgxg88//5yhQ4eGZurUaDT07NmT9evXN/l5COdG7CEIbWL06NEApKWlERcXR7du3QBo164d1dXVOJ1Otm7dSnV1dejXp9Pp5MCBA4wbN67R7apUKoYPHw5A9+7dqaqqqveYLl26oFAomDx5MsOGDWPMmDH07t2bhQsXctVVV5GWlgbAkCFDiImJqfPF15jTJw/btGkTM2bMAGq/4JcvXw7AN998w+7du/nss88AGj0ePnnyZJ5++mnuvvtuPv/8c2688Ubk8l9+u23bto0uXbqQkZEBwM0338wrr7wSeo6CggJuueWW0ONramqoqqpiw4YNfPjhh8hkMtRqNbfccgv/93//x3333Vfn+Y8dO0a7du3qvb5///vfdZZNnTr1rO/JhAkTePLJJ7nvvvvIzc1l4sSJZ338nXfeyeTJk9m6dStbt25lwYIFLFiwgM8++wyj0QhAamoqeXl5Z92OcO5EQRDaxOnzszd0WX0wGESSJD766CN0Oh1QO3iq0WjOul2VShX68pTJZA0+JjIyktzcXLZv386WLVv405/+xN13300wGKy3jiRJ+P1+ZDIZp1+y4/P56jzu9GPjSqWyznaOHz9OdHQ0wWCQ1157jU6dOgG1X9QNZRwwYAB+v59du3axfPlyPv7443qPOT3L6b/kg8EgEyZMCBWkYDCIxWLBZDLVe33BYLDBqQ5kMhnBYLDe8pbq3bs3gUCA/fv3s3LlSj744AO++uqrBh+7bds2duzYwT333MO1117Ltddey5///GfGjx/Pd999R1ZWFlD7+SoUil+dTWiYOGQkhCWDwUDfvn1Dh1Rqamq49dZbWbdu3a/e9tdff83vf/97+vXrx4MPPsjEiRPZs2cPQ4YMYePGjRw/fhyAzZs3U1xcTJ8+fYiOjmbv3r1IkoTdbufrr79udPtDhgwJnWFjs9m44447yM/PZ9iwYbz//vtIkoTX62X69On897//bXAbkydP5tlnn6Vr164kJSXVuW/gwIEcOXKEAwcOALB48eLQfcOGDWPFihVYLBYAPvzwQ+64447Qff/9739Dz//JJ58wdOjQes+dnp4eeg9+rQkTJjB79mzS09OJiopq9HExMTG89dZb/Pjjj6FlZWVl2O12unTpElp24sQJ0tPTz0s2oT6xhyCErZdffplnn32W7OxsvF4v48ePJycn51dvNzMzkw0bNjB+/HgiIiIwmUw8++yzpKam8ve//50HHniAQCCAVqvlX//6F0ajkZycHL799ltGjx5NQkICgwYNorGL/J966in+8Y9/kJ2djSRJ3H///fTs2ZMnn3yS559/nuzsbHw+H0OHDuWee+5pcBsTJ07klVdeCR0KOl1MTAwvv/wyjz32GCqVioEDB4buGzZsGPfeey933XUXMpkMg8HAG2+8gUwmY9asWTz33HOh57/mmmsaHKS/7rrr+M9//hMazG2OMweVT8nJyeHVV1/lzTffrLfO6YPK6enpzJ8/n7lz51JSUoJGo8FoNDJ79mw6duwI1J6J9NNPP102Z5W1BTF1hSAI9fztb39jyJAhZx2vudAWL17M4cOHxWmnrUgcMhIEoZ4ZM2bw6aefhs2FYA6Hg+XLl/Pggw+2dZRLmthDEARBEACxhyAIgiD8TBQEQRAEARAFQRAEQfiZKAiCIAgCIAqCIAiC8DNREARBEAQA/j/EyUs5e67o3QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1450,12 +246,12 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 6, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAADlCAYAAAB3V80dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAWrElEQVR4nO3df0zU9+HH8efJnajFflu6z1FDjeusDXFskpTo3LpjbWcBkVihyxQdc9Z2085f6/AnlLHM4CyrrrE07cpMZnQrc3q05Hq0qYuZpWn1ltmpLNUNyARz3Cm2OxSE475/uO99y8QOlPvxkdcjMennfZ+7z6vJ3SufvPl8Pm9LKBQKISIicW9MrAOIiMjQqLBFRExChS0iYhIqbBERk1Bhi4iYhApbRMQkVNgiIiZhjXWASOvs7KK/X5eai4g5jBlj4c47bxv0tVu+sPv7QypsEbklaEpERMQkVNgiIiahwhYRMQkVtoiISaiwRURMIqKFHQgEmDdvHmfPnh0wvnfvXr7zne+Et9vb21m8eDE5OTmsWLGCrq4uAD755BOeeuopcnNzWbx4MT6fL5JxRUTiWsQu6zt+/DilpaW0tLQMGD9z5gwvv/wyU6ZMCY9VVFRQVFREXl4eL774ItXV1ZSUlLBz504yMzN55ZVXcDqdbN26lZ07d0YqskjU3Pk/Y7GOTYx1DImgvis9dH58ZUQ/0xKpBQy2bNnCggULWL9+Pb/5zW+45557uHLlCkuXLqWwsBCn08mePXvo7e1l1qxZfPDBB1itVs6dO8eSJUt45513ePjhh9m7dy+TJk2ir6+PmTNn8v7772Oz2Yac4/z5gK7DlrhjGBPxbF8e6xgSQQ+sfxWf71/Dft+YMRbuuitp0Ncidoa9devWa8Z+8YtfUFhYyD333BMe6+zsJCkpCav1ahTDMPB6vQB0dHRgGMbVoFYrSUlJXLhwgZSUlCHnuN7/uIhIpBnGxBH9vKjd6fjuu+9y7tw5Nm3axPvvvx8eH+wE32KxXPdzxowZ3rS7zrAlHo30D1nik2nOsP9TfX09p0+fZv78+Vy6dAm/38/atWt57rnnCAQCBINBEhIS8Pl82O12AOx2O36/n7vvvpu+vj4CgQB33HFHtCKLiMSVqF3WV1lZyZtvvkldXR0/+9nPSE9PZ+fOndhsNjIzM3G5XAA4nU4cDgcAWVlZOJ1OAFwuF5mZmcOavxYRuZXExXXY5eXl1NbWMnfuXI4dO8batWsBWLNmDX/5y1/Iy8tj3759PPvss7ENKiISQxG7SiReaA5b4pGuErn1ReIqkbg4wxYRkf9OhS0iYhIqbBERk1Bhi4iYhApbRMQkVNgiIiahwhYRMQkVtoiISaiwRURMQoUtImISKmwREZNQYYuImIQKW0TEJFTYIiImocIWETGJiBd2IBBg3rx5nD17FoDXXnuNefPmkZ+fz6ZNm7hy5eoy8E1NTRQWFpKdnc2WLVvo6+sDoL29ncWLF5OTk8OKFSvo6uqKdGQRkbgU0cI+fvw4ixYtoqWlBYDm5mZqamr43e9+x+uvv05/fz/79u0DoKSkhLKyMhoaGgiFQtTW1gJQUVFBUVERbreb9PR0qqurIxlZRCRuRbSwa2trKS8vDy+qO3bsWH7yk5+QlJSExWLh/vvvp729nba2Nrq7u8nIyACgoKAAt9tNb28vR48eJTs7e8C4iMhoFNFV07du3TpgOzU1ldTUVAAuXLjA3r17qayspKOjA8MwwvsZhoHX66Wzs5OkpCSsVuuAcRGR0SiihX09Xq+X5cuXU1hYyKxZs/jzn/98zT4Wi4XBlpu0WCzDOtb11kYTEYk0w5g4op8X9cL++9//zpNPPsmSJUtYtmwZACkpKfj9/vA+Pp8Pu91OcnIygUCAYDBIQkJCeHw4tAivxKOR/iFLfDL1IryBQIAnnniCNWvWhMsark6VJCYm4vF4AHA6nTgcDmw2G5mZmbhcrgHjIiKjUVQLe//+/fj9fn79618zf/585s+fzy9/+UsAqqqqqKysJDc3l8uXL1NcXAxAeXk5tbW1zJ07l2PHjrF27dpoRhYRiRuW0GATxbcQTYlIPDKMiXi2L491DImgB9a/au4pERERuXEqbBERk1Bhi4iYhApbRMQkVNgiIiahwhYRMQkVtoiISaiwRURMQoUtImISKmwREZNQYYuImIQKW0TEJFTYIiImocIWETEJFbaIiElEvLADgQDz5s3j7NmzADQ2NpKfn8+jjz7Kjh07wvs1NTVRWFhIdnY2W7Zsoa+vD4D29nYWL15MTk4OK1asoKurK9KRRUTiUkQL+/jx4yxatIiWlhYAuru72bx5M9XV1bhcLk6cOMHhw4cBKCkpoaysjIaGBkKhELW1tQBUVFRQVFSE2+0mPT2d6urqSEYWEYlbES3s2tpaysvLwwvnfvjhh0yZMoXJkydjtVrJz8/H7XbT1tZGd3c3GRkZABQUFOB2u+nt7eXo0aNkZ2cPGBcRGY0iumr61q1bB2x3dHRgGEZ422634/V6rxk3DAOv10tnZydJSUlYrdYB4yIio1FEC/s/DbZ8pMViGfb4cFxvbTQRkUgzjIkj+nlRLeyUlBT8fn94u6OjA7vdfs24z+fDbreTnJxMIBAgGAySkJAQHh8OLcIr8Wikf8gSn0y9CO+MGTNobm6mtbWVYDBIfX09DoeD1NRUEhMT8Xg8ADidThwOBzabjczMTFwu14BxEZHRKKpn2ImJiWzbto1Vq1bR09NDVlYWOTk5AFRVVVFaWkpXVxfTp0+nuLgYgPLycjZu3MhLL73EpEmTeP7556MZWUQkblhCg00U30I0JSLxyDAm4tm+PNYxJIIeWP+quadERETkxqmwRURMQoUtImISKmwREZNQYYuImIQKW0TEJFTYIiImocIWETEJFbaIiEmosEVETEKFLSJiEipsERGTUGGLiJjEkAp7sGW5zpw5M+JhRETk+j6zsC9evMjFixd58skn+fjjj8Pbfr+flStXRiujiIjwXxYweOaZZ3j33XcBmDVr1v+/yWrlm9/8ZmSTiYjIAJ9Z2DU1NQBs2rSJysrKETtoXV0dr7zyCgAOh4MNGzbQ1NREaWkpgUCAzMxMKioqsFqttLe3U1JSwvnz57n33nupqqritttuG7EsIiJmMaQ57MrKStra2jh16hQnT54M/7sRly9fZuvWrezZs4e6ujqOHTtGY2MjJSUllJWV0dDQQCgUora2FoCKigqKiopwu92kp6dTXV19Q8cVETG7Ia3pWFVVxZ49e7jrrrvCYxaLhXfeeWfYBwwGg/T393P58mUmTJhAX18fVquV7u5uMjIyACgoKOCFF17gW9/6FkePHuXFF18Mjy9ZsoSSkpJhH1dExOyGVNgul4u33nqLlJSUmz5gUlISa9asITc3l3HjxjFz5kxsNhuGYYT3MQwDr9dLZ2cnSUlJWK3WAePDcb210UREIs0wJo7o5w2psCdNmjQiZQ3wt7/9jT/84Q/88Y9/ZOLEifz4xz8O/2Hz0ywWC4OtD2yxWIZ1PC3CK/FopH/IEp9GehHeIRX27Nmz2b59O4888gjjxo0Lj3/xi18cdpgjR44we/bs8PRKQUEBNTU1+P3+8D4+nw+73U5ycjKBQIBgMEhCQkJ4XERkNBpSYR84cAAAt9sdHrvROey0tDSee+45Ll26xPjx4zl06BAzZ86koaEBj8fDAw88gNPpxOFwYLPZyMzMxOVykZ+fHx4XERmNhlTYhw4dGrEDPvjgg5w6dYqCggJsNhtf+tKXeOqpp5gzZw6lpaV0dXUxffp0iouLASgvL2fjxo289NJLTJo0ieeff37EsoiImIklNNhE8X/YvXv3oOPf+973RjzQSNMctsQjw5iIZ/vyWMeQCHpg/auxmcP+6KOPwv995coVPB7PgDsfRUQk8oZU2P95l+OFCxdYv359RAKJiMjgbujxqsnJybS1tY10FhER+QxDOsP+9Bx2KBTixIkTA+56FBGRyBv2HDZcvZFGUyIiItE1rDnstrY2+vr6mDJlSkRDiYjItYZU2K2traxcuZKOjg76+/u58847efnll5k6dWqk84mIyL8N6Y+OP/3pT1m+fDlHjx7F4/GwYsUKKioqIp1NREQ+ZUiFff78eRYsWBDeLiwspLOzM2KhRETkWkMq7GAwyMWLF8PbFy5ciFQeERG5jiHNYS9ZsoRvf/vb5ObmAvDmm2/y3e9+N6LBRERkoCGdYWdlZQHQ29vLP/7xD7xeL3PmzIloMBERGWhIZ9gbN25k8eLFFBcX09PTw29/+1s2b97Mr371q0jnExGRfxvSGXZnZ2f4caeJiYksXboUn88X0WAiIjLQkP/o+Om1FP1+/6DLd4mISOQMaUpk6dKlPPbYY3z961/HYrHQ2Nh4U7emHzp0iF27dnHp0iUefPBBSktLaWxspLKykp6eHnJzc1m3bh0ATU1NlJaWEggEyMzMpKKiIrwor4jIaDKkM+zHH3+c3bt3M336dNLT06mpqSE/P/+GDvjPf/6T8vJyqqureeONNzh16hSHDx9m8+bNVFdX43K5OHHiBIcPHwagpKSEsrIyGhoaCIVC1NbW3tBxRUTMbsinqmlpaaSlpd30Ad9++23mzp3L3XffDcCOHTtobW1lypQpTJ48GYD8/Hzcbjf33Xcf3d3dZGRkAFcX7H3hhRcoKiq66RwiImYT9bmF1tZWbDYbTzzxBD6fj4ceeohp06ZhGEZ4H7vdjtfrpaOjY8C4YRgD5tKH4npL7YiIRJphTBzRz4t6YQeDQY4dO8aePXuYMGECK1euZPz48dfsZ7FYBv3DpsViGdbxtKajxKOR/iFLfIrJmo4j6XOf+xyzZ88mOTkZgEceeQS3201CQkJ4n46ODux2OykpKfj9/vC4z+fDbrdHO7KISFy4oSXCbsZDDz3EkSNH+OSTTwgGg/zpT38iJyeH5uZmWltbCQaD1NfX43A4SE1NJTExEY/HA4DT6cThcEQ7sohIXIj6GfaMGTNYvnw5RUVF9Pb28rWvfY1FixbxhS98gVWrVtHT00NWVhY5OTkAVFVVUVpaSldXF9OnTw/fwCMiMtpYQrf4HTCaw5Z4ZBgT8WxfHusYEkEPrH91xOewoz4lIiIiN0aFLSJiEipsERGTUGGLiJiECltExCRU2CIiJqHCFhExCRW2iIhJqLBFRExChS0iYhIqbBERk1Bhi4iYhApbRMQkVNgiIiYR9edhm8XE28cxLtEW6xgSQd09vfzrk+5YxxAZspgW9s9//nM6OzvZtm0bTU1NlJaWEggEyMzMpKKiAqvVSnt7OyUlJZw/f557772XqqoqbrvttohnG5doo2j93ogfR2Jn3/bF/AsVtphHzKZE3nvvPQ4ePBjeLikpoaysjIaGBkKhELW1tQBUVFRQVFSE2+0mPT2d6urqWEUWEYmpmBT2xYsX2bFjBz/4wQ8AaGtro7u7m4yMDAAKCgpwu9309vZy9OhRsrOzB4yLiIxGMSnsZ599lnXr1nH77bcDV1dJNwwj/LphGHi9Xjo7O0lKSsJqtQ4YFxEZjaI+h/373/+eSZMmMXv2bA4cOADAYMtKWiyW644Px/XWRhOBq2srikTKSH+/ol7YLpcLn8/H/Pnz+fjjj7l06RIWiwW/3x/ex+fzYbfbSU5OJhAIEAwGSUhICI8Px40uwqsf8uhwI4ukjgR9v0YH0y/Cu3v3burr66mrq2P16tU8/PDDVFZWkpiYiMfjAcDpdOJwOLDZbGRmZuJyuQaMi4iMRnFz40xVVRWVlZXk5uZy+fJliouLASgvL6e2tpa5c+dy7Ngx1q5dG9ugIiIxEtPrsAsKCigoKAAgLS2N/fv3X7NPamoqe/bsiXY0EZG4Ezdn2CIi8tlU2CIiJqHCFhExCRW2iIhJqLBFRExChS0iYhIqbBERk1Bhi4iYhApbRMQkVNgiIiahwhYRMQkVtoiISaiwRURMQoUtImISKmwREZOISWHv2rWLvLw88vLy2L59OwCNjY3k5+fz6KOPsmPHjvC+TU1NFBYWkp2dzZYtW+jr64tFZBGRmIt6YTc2NnLkyBEOHjyI0+nk5MmT1NfXs3nzZqqrq3G5XJw4cYLDhw8DUFJSQllZGQ0NDYRCIWpra6MdWUQkLkS9sA3DYOPGjYwdOxabzcbUqVNpaWlhypQpTJ48GavVSn5+Pm63m7a2Nrq7u8nIyACurlDjdrujHVlEJC5EvbCnTZsWLuCWlhZcLhcWiwXDMML72O12vF4vHR0dA8YNw8Dr9UY7sohIXIjZmo6nT5/m+9//Phs2bMBqtdLc3DzgdYvFQigUuuZ9FotlWMe53nLxIgCGMTHWEeQWNtLfr5gUtsfjYfXq1WzevJm8vDw++OAD/H5/+PWOjg7sdjspKSkDxn0+H3a7fVjHOn8+QH//tcX/3+iHPDr4fP+KyXH1/RodbuT7NWaM5bonmlGfEjl37hxPP/00VVVV5OXlATBjxgyam5tpbW0lGAxSX1+Pw+EgNTWVxMREPB4PAE6nE4fDEe3IIiJxIepn2DU1NfT09LBt27bw2MKFC9m2bRurVq2ip6eHrKwscnJyAKiqqqK0tJSuri6mT59OcXFxtCOLiMSFqBd2aWkppaWlg772+uuvXzOWlpbG/v37Ix1LRCTu6U5HERGTUGGLiJiECltExCRU2CIiJqHCFhExCRW2iIhJqLBFRExChS0iYhIqbBERk1Bhi4iYhApbRMQkVNgiIiahwhYRMQkVtoiISaiwRURMQoUtImISpijsN954g7lz5zJnzhz27t0b6zgiIjERs1XTh8rr9bJjxw4OHDjA2LFjWbhwIbNmzeK+++6LdTQRkaiK+8JubGzkK1/5CnfccQcA2dnZuN1ufvjDHw7p/WPGWG742J+787Ybfq+Yw818P27W2NvvitmxJTpu5Pv1We+J+8Lu6OjAMIzwtt1u58MPPxzy+++8idJ9YdNjN/xeMYe77kqK2bG/9IOfx+zYEh0j/f2K+znsUCh0zZjFEruzIhGRWIn7wk5JScHv94e3Ozo6sNvtMUwkIhIbcV/YX/3qV3nvvfe4cOECly9f5q233sLhcMQ6lohI1MX9HHZKSgrr1q2juLiY3t5eHn/8cb785S/HOpaISNRZQoNNEouISNyJ+ykRERG5SoUtImISKmwREZNQYYuImIQKW/RwLYmYXbt2kZeXR15eHtu3b491HNNTYY9y//dwrX379lFXV8drr73GmTNnYh1LbgGNjY0cOXKEgwcP4nQ6OXnyJG+//XasY5maCnuU+/TDtSZMmBB+uJbIzTIMg40bNzJ27FhsNhtTp06lvb091rFMTYU9yg32cC2v1xvDRHKrmDZtGhkZGQC0tLTgcrnIysqKbSiTU2GPcnq4lkTa6dOnWbZsGRs2bODzn/98rOOYmgp7lNPDtSSSPB4PS5cu5ZlnnmHBggWxjmN6KuxRTg/Xkkg5d+4cTz/9NFVVVeTl5cU6zi0h7h/+JJGlh2tJpNTU1NDT08O2bdvCYwsXLmTRokUxTGVueviTiIhJaEpERMQkVNgiIiahwhYRMQkVtoiISaiwRURMQpf1iQzR2bNnmTNnDvfffz8A/f392Gw2iouLeeyxx2IbTkYFFbbIMIwbN466urrwdltbG0uXLmX8+PFkZ2fHMJmMBpoSEbkJqamprF69mpqamlhHkVFAhS1yk9LS0vjoo49iHUNGARW2yE2yWCyMGzcu1jFkFFBhi9ykv/71r+E/RIpEkgpb5CY0NzdTXV3NsmXLYh1FRgFdJSIyDN3d3cyfPx+AMWPGkJiYyI9+9CO+8Y1vxDaYjAp6Wp+IiEloSkRExCRU2CIiJqHCFhExCRW2iIhJqLBFRExChS0iYhIqbBERk1Bhi4iYxP8CF6dafbJdRasAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWYAAADlCAYAAABgdV3UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAARxUlEQVR4nO3df0yV9d/H8deFR7AffO8c93WkkbNFODe6C2db0hbUGmAhS8kVWhKZxV1iq5xMgeVsldyMzY2pqxWrLa1kLqGcUq2am1Grzh8azqmVxy1wxwP+yOPiBJ7r/sN1iiw7INc5HzjPx19cF+c617t2eHb14ZwLy3EcRwAAY6QkegAAwHCEGQAMQ5gBwDCEGQAMQ5gBwDCEGQAMQ5gBwDCeRA8wVk6fPq9IhLdkAzBfSoqlqVOv+cfvT5gwRyIOYQYwIbCUAQCGIcwAYBjCDACGIcwAYBjCDACGmTDvygBMM/W/UuVJTUv0GHDR0G9hnT7725g/L2EGXOJJTZOvaXmix4CL5tS+KWnsw8xSBgAYhjADgGEIMwAYhjADgGEIMwAYhjADgGFcfbvcpk2btGfPHklSYWGhamtrtXbtWvl8Pl111VWSpJqaGhUVFenQoUOqr6/X+fPndfvtt2v9+vXyeHg3H4Dk41r5urq6tG/fPu3cuVOWZWn58uX69NNP1d3dra1bt8rr9Q57/OrVq/Xyyy8rLy9PdXV1amtr05IlS9waDwCM5dpShm3bWrNmjVJTUzV58mRlZ2ert7dXvb29qqurU1lZmVpaWhSJRNTT06OBgQHl5eVJksrLy9XZ2enWaABgNNeumHNycqJf+/1+7dmzR9u2bdM333yjdevWKT09XdXV1dqxY4dycnJk23b08bZtKxAIuDUaABjN9UXco0ePqrq6WrW1tbrpppu0efPm6PeWLl2q9vZ2ZWdny7Ks6H7HcYZtxyIj49oxmxkAYmXb6WP+nK6G2efz6dlnn1VdXZ1KS0t1+PBh+f1+lZSUSLoYYI/Ho8zMTAWDwehxfX19l6xB/5v+/hB/WgpGceMHFuYJBs+N+JiUFOuyF5OurTGfOHFCK1asUHNzs0pLSyVdDPGrr76qs2fPanBwUNu3b1dRUZGysrKUlpYmn88nSero6FBBQYFbowGA0Vy7Ym5tbVU4HFZjY2N0X0VFhZ566iktXrxYQ0NDKi4u1vz58yVJzc3NamhoUCgUUm5uriorK90aDQCMZjmOMyH+/5+lDJjGttO57ecEN6f2zfG1lAEAGB3CDACGIcwAYBjCDACGIcwAYBjCDACGIcwAYBjCDACGIcwAYBjCDACGIcwAYBjCDACGIcwAYBjCDACGIcwAYBjCDACGIcwAYBjCDACGIcwAYBjCDACGIcwAYBjCDACGIcwAYBjCDACGcTXMmzZtUmlpqUpLS9XU1CRJ6urqUllZmYqLi7Vx48boYw8dOqTy8nKVlJSovr5eQ0NDbo4GAMZyLcxdXV3at2+fdu7cqfb2dh08eFC7du1SXV2dtmzZot27d6u7u1t79+6VJK1evVovvviiPv74YzmOo7a2NrdGAwCjuRZm27a1Zs0apaamavLkycrOzpbf79eMGTM0ffp0eTwelZWVqbOzUz09PRoYGFBeXp4kqby8XJ2dnW6NBgBG87j1xDk5OdGv/X6/9uzZo0cffVS2bUf3e71eBQIBnTx5cth+27YVCARGdL6MjGuvfGgAGCHbTh/z53QtzL87evSoqqurVVtbq0mTJsnv90e/5ziOLMtSJBKRZVmX7B+J/v6QIhFnrMYGrpgbP7AwTzB4bsTHpKRYl72YdPWXfz6fT1VVVVq1apUWLlyozMxMBYPB6PeDwaC8Xu8l+/v6+uT1et0cDQCM5VqYT5w4oRUrVqi5uVmlpaWSpNtuu03Hjh3T8ePHdeHCBe3atUsFBQXKyspSWlqafD6fJKmjo0MFBQVujQYARnNtKaO1tVXhcFiNjY3RfRUVFWpsbNTKlSsVDodVWFioefPmSZKam5vV0NCgUCik3NxcVVZWujUaABjNchxnQizMssYM09h2unxNyxM9Blw0p/bN8bfGDAAYOcIMAIYhzABgGMIMAIYhzABgGMIMAIYhzABgGMIMAIYhzABgGMIMAIYhzABgGMIMAIYhzABgGMIMAIYhzABgGMIMAIYhzABgGMIMAIYhzABgGMIMAIaJKcyBQOCSfT/88MOYDwMA+JcwnzlzRmfOnNGTTz6ps2fPRrf7+vpUU1MTrxkBIKl4LvfNVatW6csvv5Qk3XHHHX8c5PGopKTE3ckAIEldNsytra2SpLVr12rDhg0jfvJQKKSKigq99tpruuGGG7R27Vr5fD5dddVVkqSamhoVFRXp0KFDqq+v1/nz53X77bdr/fr18nguOxoATFgx1W/Dhg3q6enR2bNn5ThOdH9ubu4/HrN//341NDTI7/dH93V3d2vr1q3yer3DHrt69Wq9/PLLysvLU11dndra2rRkyZIR/qMAwMQQU5hbWlrU2tqqjIyM6D7LsvTZZ5/94zFtbW1at26damtrJUm//vqrent7VVdXp0AgoKKiItXU1OjEiRMaGBhQXl6eJKm8vFwtLS2EGUDSiinM7e3t+uSTTzRt2rSYn/iVV14Ztt3X16e5c+dq3bp1Sk9PV3V1tXbs2KGcnBzZth19nG3bf/suEABIFjGF+frrrx9RlP/O9OnTtXnz5uj20qVL1d7eruzsbFmWFd3vOM6w7VhlZFx7RfMBwGjYdvqYP2dMYc7Pz1dTU5PuvfdeTZkyJbr/cmvMf3X48GH5/f7ouzkcx5HH41FmZqaCwWD0cX19fZesQceivz+kSMT59wcCceLGDyzMEwyeG/ExKSnWZS8mYwrzBx98IEnq7OyM7vu3Nea/chxHr776qubOnaurr75a27dv18KFC5WVlaW0tDT5fD7NmTNHHR0dKigoiPl5AWCiiSnMn3/++RWfaNasWXrqqae0ePFiDQ0Nqbi4WPPnz5ckNTc3q6GhQaFQSLm5uaqsrLzi8wHAeGU5f37/2z946623/nb/448/PuYDjRZLGTCNbafL17Q80WPARXNq30zcUsaRI0eiX//222/69ttvlZ+fP+JhAAD/LuYPmPxZIBBQfX29KwMBQLIb1W0/p02bpp6enrGeBQCgGK+Y/7zG7DiOuru7h30KEAAwdka8xixd/MDJ7x+1BgCMrRGtMff09GhoaEgzZsxwdSgASGYxhfn48eN65plndPLkSUUiEU2dOlWvv/66srOz3Z4PAJJOTL/8e+mll7R8+XJ9++238vl8evrpp7V+/Xq3ZwOApBRTmPv7+7Vw4cLo9oMPPqjTp0+7NhQAJLOYwnzhwgWdOXMmun3q1Cm35gGApBfTGvOjjz6qhx9+WPfdd58sy9Lu3bv12GOPuT0bACSlmK6YCwsLJUmDg4P68ccfo3+BBAAw9mK6Yl6zZo0eeeQRVVZWKhwO67333lNdXZ3eeOMNt+cDgKQT0xXz6dOno7fiTEtLU1VV1bCb2wMAxk7Mv/z789/h6+vrUwx3CwUAjEJMSxlVVVVasGCB7rrrLlmWpa6uLj6SDQAuiSnMixYt0i233KKvv/5akyZN0hNPPKGZM2e6PRsAJKWYwixd/NNQs2bNcnMWAIBGeT9mAIB7CDMAGIYwA4BhCDMAGIYwA4BhXA1zKBTS/Pnz9fPPP0uSurq6VFZWpuLiYm3cuDH6uEOHDqm8vFwlJSWqr6/X0NCQm2MBgNFcC/P+/fu1ePFi+f1+SdLAwIDq6uq0ZcsW7d69W93d3dq7d68kafXq1XrxxRf18ccfy3EctbW1uTUWABjPtTC3tbVp3bp18nq9kqQDBw5oxowZmj59ujwej8rKytTZ2amenh4NDAwoLy9PklReXq7Ozk63xgIA48X8AZOReuWVV4Ztnzx5UrZtR7e9Xq8CgcAl+23bHnZfDrel/2eKpqRNjtv5EH8D4UGd+2Ug0WMAMXMtzH8ViURkWVZ023EcWZb1j/tHKiPj2lHPtqR226iPhfnebXpEU2z+4wt32Hb6mD9n3MKcmZk57FahwWBQXq/3kv19fX3R5Y+R6O8PKRIZ+R3v3PiXCvMEg+fifk5eW8lhNK+tlBTrsheTcXu73G233aZjx47p+PHjunDhgnbt2qWCggJlZWUpLS1NPp9PktTR0aGCgoJ4jQUAxonbFXNaWpoaGxu1cuVKhcNhFRYWat68eZKk5uZmNTQ0KBQKKTc3N3pTfgBIRq6H+fPPP49+nZ+frw8//PCSx8yaNUs7duxwexQAGBf45B8AGIYwA4BhCDMAGIYwA4BhCDMAGIYwA4BhCDMAGIYwA4BhCDMAGIYwA4BhCDMAGIYwA4BhCDMAGIYwA4BhCDMAGIYwA4BhCDMAGIYwA4BhCDMAGIYwA4BhCDMAGIYwA4BhCDMAGMaTiJMuXbpUp06dksdz8fQvvfSSzp8/rw0bNigcDuu+++7T888/n4jRACDh4h5mx3Hk9/v1xRdfRMM8MDCgefPm6Z133tH111+v6upq7d27V4WFhfEeDwASLu5h/umnnyRJy5Yt05kzZ/TQQw9p5syZmjFjhqZPny5JKisrU2dnJ2EGkJTivsb8yy+/KD8/X5s3b9bbb7+t999/X729vbJtO/oYr9erQCAQ79EAwAhxv2KePXu2Zs+eHd1etGiRWlpaNGfOnOg+x3FkWdaInjcj49oxmxETj22nJ3oETFBuvLbiHubvvvtOg4ODys/Pl3QxwllZWQoGg9HHBINBeb3eET1vf39IkYgz4nn4gU0OweC5uJ+T11ZyGM1rKyXFuuzFZNyXMs6dO6empiaFw2GFQiHt3LlTL7zwgo4dO6bjx4/rwoUL2rVrlwoKCuI9GgAYIe5XzPfcc4/279+vBQsWKBKJaMmSJZo9e7YaGxu1cuVKhcNhFRYWat68efEeDQCMkJD3MT/33HN67rnnhu3Lz8/Xhx9+mIhxAMAofPIPAAxDmAHAMIQZAAxDmAHAMIQZAAxDmAHAMIQZAAxDmAHAMIQZAAxDmAHAMIQZAAxDmAHAMIQZAAxDmAHAMIQZAAxDmAHAMIQZAAxDmAHAMIQZAAxDmAHAMIQZAAxDmAHAMIQZAAxDmAHAMEaF+aOPPtL999+v4uJibdu2LdHjAEBCeBI9wO8CgYA2btyoDz74QKmpqaqoqNAdd9yhm2++OdGjAUBcGRPmrq4uzZ07V9ddd50kqaSkRJ2dnaqpqYnp+JQUa9Tn/u+p14z6WIwPV/L6uBKp/8lIyHkRP6N5bf3bMcaE+eTJk7JtO7rt9Xp14MCBmI+fegVxbVm7YNTHYnzIyLg2Ief9n//9v4ScF/HjxmvLmDXmSCQiy/rjvyKO4wzbBoBkYUyYMzMzFQwGo9vBYFBerzeBEwFAYhgT5jvvvFNfffWVTp06pV9//VWffPKJCgoKEj0WAMSdMWvM06ZN0/PPP6/KykoNDg5q0aJFuvXWWxM9FgDEneU4jpPoIQAAfzBmKQMAcBFhBgDDEGYAMAxhBgDDEOYkwk2i4JZNmzaptLRUpaWlampqSvQ44x5hThK/3yTq3XffVXt7u7Zv364ffvgh0WNhAujq6tK+ffu0c+dOtbe36+DBg/r0008TPda4RpiTxJ9vEnX11VdHbxIFXCnbtrVmzRqlpqZq8uTJys7OVm9vb6LHGtcIc5L4u5tEBQKBBE6EiSInJ0d5eXmSJL/frz179qiwsDCxQ41zhDlJcJMouO3o0aNatmyZamtrdeONNyZ6nHGNMCcJbhIFN/l8PlVVVWnVqlVauHBhoscZ9whzkuAmUXDLiRMntGLFCjU3N6u0tDTR40wIxtzECO7iJlFwS2trq8LhsBobG6P7KioqtHjx4gRONb5xEyMAMAxLGQBgGMIMAIYhzABgGMIMAIYhzABgGN4uB/zFzz//rKKiIs2cOVPSxU9NXnPNNaqsrNT999+f4OmQDAgz8DemTJmijo6O6HZPT4+qqqo0adIklZSUJHAyJAOWMoAYZGVl6dlnn1Vra2uiR0ESIMxAjGbNmqUjR44kegwkAcIMxMiyLE2ZMiXRYyAJEGYgRt9//330F4KAmwgzEINjx45py5YtWrZsWaJHQRLgXRnA3xgYGNADDzwgSUpJSVFaWppeeOEF3X333YkdDEmBu8sBgGFYygAAwxBmADAMYQYAwxBmADAMYQYAwxBmADAMYQYAwxBmADDM/wPhSCVk+ywHTgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1490,7 +286,7 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -1527,7 +323,7 @@ " \n", " 1\n", " 0.2\n", - " 488.000000\n", + " 488.100000\n", " \n", " \n", " 2\n", @@ -1536,13 +332,13 @@ " \n", " \n", " 3\n", - " 3.6\n", - " 491.400000\n", + " 3.0\n", + " 491.000000\n", " \n", " \n", " 4\n", - " 4.0\n", - " 492.000000\n", + " 3.6\n", + " 491.400000\n", " \n", " \n", " ...\n", @@ -1550,53 +346,53 @@ " ...\n", " \n", " \n", - " 424\n", + " 417\n", + " 148.8\n", + " 636.600000\n", + " \n", + " \n", + " 418\n", + " 149.0\n", + " 636.800000\n", + " \n", + " \n", + " 419\n", " 149.2\n", " 637.200000\n", " \n", " \n", - " 425\n", + " 420\n", " 149.4\n", " 637.266667\n", " \n", " \n", - " 426\n", + " 421\n", " 149.6\n", - " 637.300000\n", - " \n", - " \n", - " 427\n", - " 149.8\n", - " 633.500000\n", - " \n", - " \n", - " 428\n", - " 150.0\n", - " 633.500000\n", + " 637.333333\n", " \n", " \n", "\n", - "

429 rows × 2 columns

\n", + "

422 rows × 2 columns

\n", "" ], "text/plain": [ " TARGET_S SOURCE_S\n", "0 0.0 487.800000\n", - "1 0.2 488.000000\n", + "1 0.2 488.100000\n", "2 1.8 489.800000\n", - "3 3.6 491.400000\n", - "4 4.0 492.000000\n", + "3 3.0 491.000000\n", + "4 3.6 491.400000\n", ".. ... ...\n", - "424 149.2 637.200000\n", - "425 149.4 637.266667\n", - "426 149.6 637.300000\n", - "427 149.8 633.500000\n", - "428 150.0 633.500000\n", + "417 148.8 636.600000\n", + "418 149.0 636.800000\n", + "419 149.2 637.200000\n", + "420 149.4 637.266667\n", + "421 149.6 637.333333\n", "\n", - "[429 rows x 2 columns]" + "[422 rows x 2 columns]" ] }, - "execution_count": 68, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -1629,22 +425,22 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 69, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD7CAYAAACPDORaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAqs0lEQVR4nO3de1RU57038O8eZkDx8hpx8BbrsdbEWwJEq51iwNGmAkp0jb45SuJ4qpKLrVHOe6yGQ+Nl2ULUE7s8Ll2t0bwJ1RjTiikcxdrXwCsy67SQqAlgXiNKrMptYoLchmHY7x9kJlyGmdlzYfYM389aZ5067D38Zmu+PPz2s59HEEVRBBERBSWFvwsgIiLfYcgTEQUxhjwRURBjyBMRBTGGPBFREGPIExEFMYY8EVEQU/q7gJ4ePGhCR4f0qfsREUNhNDb6oCLvYY2ek3t9gPxrlHt9gPxrlFN9CoWARx4Z0ufXZRfyHR2iWyFvPVfuWKPn5F4fIP8a5V4fIP8a5V6flUvtmosXL0Kn0yEhIQG7d+/u9rXjx49j9erVtj/fu3cPzz//PBISEvDKK6+gqanJuxUTEZHLnIb8nTt3sH37dhw6dAi5ubkoLy9HYWEhAOCLL77A7373u27H79y5EykpKcjPz8fMmTNx6NAh31ROREROOQ35CxcuICkpCWPGjIFKpcL+/fsRFRWFtrY2vP7669i0aZPtWLPZjL///e9YtGgRAECn0yE/P9931RMRkUNOe/JVVVVQqVRYt24d6urqoNVqsXnzZmRlZWH58uV49NFHbcc+ePAAQ4cOhVLZ+bZqtRo1NTWSCoqIGCrxI3xHrR7m9rn9hTV6Tu71AfKvUe71AfKvUe71WTkNeYvFgpKSEmRnZyM8PBwbNmzABx98gPv37+O1117Df//3f9uOtbegpSAIkgoyGhvduqGhVg9DXd1Dyef1J9boObnXB8i/RrnXB8i/Rm/Ul33+Oj765F6317Qx47B60VRJ76NQCA4Hx05DftSoUdBoNBg5ciQAYOHChfjkk09w48YNLF26FM3Nzaivr8fmzZuxd+9eNDY2wmKxICQkBHV1dYiMjJRUMBFRMLMX7lbW16UGvSNOe/JarRZFRUVoaGiAxWLBpUuX8NRTT+HcuXP48MMPsXv3bsycORO//e1voVKpMHv2bJw9exYAcObMGcTFxXmtWCKiQJZxxNBnwFsVXnH8damcjuSjoqKwfv16pKSkwGw2IzY2FsuXL+/z+O3bt2Pbtm04fPgwxo4dizfffNOrBRMRBRpHo/eevD39XpDbzlDsyfuX3GuUe32A/GuUe32A/Gss+/Jr/O+8MhgbTIgYHgZd/GRoZozpdZyhrBrH8sphkRBpCgF4a+sC14/3tCdPRETfMZRV4938z2EyWwAAxgYT3jl3HQC6BX3GEQPuGVskv//j3xvhlTqtuEAZEZEEpwtv2gLeqq29A6cLbwLobM2szbroVsADwI1/fANDWbXHdVox5ImIJDA2mPp83ZUbq860W0TbDwxvYMgTEUkQMTysz6+5O3rvqa8fJO5gyBMRSaCLn4wwVYjH7+PoPRz9IJGKIU9EJIFmxhj84n9GuX2+NmYcjm1bAH3C4wixsyCAMkSALn6yBxX2eD+vvRMR0QAgZc57V4IArF8y3TYDx/r/T1z4HE2tnTdyhw5WYtVPHrM7HdNdDHkiIhftfe9jVFR9Lfm8vtak0cwY49VAt4chT0Tkguzz1yUHvDsLjnkbQ56IyAFDWXW3loorlCECfpY0zeejdJdq8XcBRERy5U57ZsigEPzn5njfFOQGhjwRUQ/urDkDdI7gU5553DdFuYkhT0TUhbs3V30xM8YbGPJERN+SGvByuLHqDEOeiAY8qXPfh4WrsHLhFNmN2u1hyBPRgGUoq8ZbueWQ0nqfNnEE9rwaL+v17rtiyBPRgOTOk6vTJo7AllVP+agi33Ap5C9evIiDBw+iubkZ8+bNQ0ZGBt5//31kZ2dDEATMnDkTO3fuRGhoKCoqKpCRkYHGxkbMnj0bO3fuhFLJnyVEJA+Gsmq8c64Cbe3Sps4EQv/dHqcLlN25cwfbt2/HoUOHkJubi/Lycrzzzjs4evQoTp48iT//+c/o6OjAiRMnAABbtmzBr371K5w/fx6iKOLUqVM+/xBERK7IPn8dR3LLJQW8MkRAavL0gAx4wIWR/IULF5CUlIQxYzpvMOzfvx/t7e2YMmUKhg7t3Ffwsccew71793D37l20trYiOjoaAKDT6XDgwAGkpKT47hMQETlgKKvG6cKbbq3RHqij966chnxVVRVUKhXWrVuHuro6aLVabN68GePHjwcAfPXVVzh+/DgyMzNRW1sLtVptO1etVqOmpsZ31RMROeDunPcQhYC1i+WxLIGnnIa8xWJBSUkJsrOzER4ejg0bNiAnJwc6nQ41NTVYv349li9fjrlz5+Ljjz/udb4g2Fkw2QFHu447o1YPc/vc/sIaPSf3+gD51yj3+gDPa8w4XORWwCdpJuKVFdFOjwuEawi4EPKjRo2CRqPByJEjAQALFy7EtWvXEBUVhdTUVLzwwgtYu3YtAGD06NGor6+3nVtXV4fIyEhJBRmNjejokPgsMTovuNynNLFGz8m9PkD+Ncq9PsDzGg1l1bj6hVHSOV1bM86+t5yuoUIhOBwcOw15rVaLrVu3oqGhAUOGDMGlS5eg0Wiwbt06pKWlYenSpbZjx48fj7CwMJSWlmLWrFk4c+YM4uLivPNJiIh66NpvjxgeBl38ZGhmjJG8EXYw9N774jTko6KisH79eqSkpMBsNiM2NhYWiwX19fU4duwYjh07BgBYsGABNm3ahH379iEjIwNNTU2YPn069Hq9zz8EEQ08Pee5GxtMOJJbjiO55S6/RzD13vsiiKIovTfiQ2zX+Jfca5R7fYD8a5R7fYDzGg1l1ZLC3J4RQ1R4c+PTbp0rp2vocbuGiEhO3N1jtatgbs/0xJAnooDhjYA/tm2Bl6oJDE6feCUikovCK54FvELajO6gwJAnooDhxu26buKjx3mnkADCdg0RyYo3WjL2DKQ+fFcMeSKSDW8HfMTwMOzdEOu19wtEbNcQkWx42nPvyZ1FyYINQ56IZMPTnntPEcPDvPuGAYjtGiLyO1/04UOVCujiJ3v1PQMRR/JE5FfeCPhQpQLamHG2kXvE8DCsSZwa1MsVuIojeSLyC0828+iq68Jk1BtDnoj6Xec+q9fR1t7h9NiB9oSqt7FdQ0T97nThTZcCfiA+oeptHMkTUb9wpz0zEJ9Q9TaGPBH5nJT2jNVAfULV2xjyRORTrm6mHapU2GbEyGm99kDHkCcin5AyNZIzZHzHpZC/ePEiDh48iObmZsybNw8ZGRkoLi5GZmYmTCYTEhMTkZaWBgCoqKhARkYGGhsbMXv2bOzcuRNKJX+WEA0kro7eFQLw1lbOnvElp7Nr7ty5g+3bt+PQoUPIzc1FeXk5CgsLkZ6ejkOHDuHs2bP47LPPUFhYCADYsmULfvWrX+H8+fMQRRGnTp3y+YcgIvkwlFW7FPCA95cxoN6cDrEvXLiApKQkjBnT+WvU/v37UVVVhYkTJ2LChAkAgOTkZOTn5+MHP/gBWltbER0dDQDQ6XQ4cOAAUlJSfPcJiMjvus6ckTLtkWvL+J7TkK+qqoJKpcK6detQV1cHrVaLKVOmQK1W246JjIxETU0Namtru72uVqtRU1Pjm8qJSBZ69t5dHZ1zbZn+4TTkLRYLSkpKkJ2djfDwcGzYsAGDBw/udZwgCBDF3n+7giDtaQZHu447o1YPc/vc/sIaPSf3+gD51+hpfQWld/D7M5/iYbPZve//yGDoE6dh/qwJfR8T5NewvzgN+VGjRkGj0WDkyJEAgIULFyI/Px8hISG2Y2praxEZGYnRo0ejvr7e9npdXR0iIyMlFWQ0NqLDjUZdIEy5Yo2ek3t9gPxr9LQ+Q1k1juWVwyLxP9NpE0dgy6qnur3WVx3Bfg29SaEQHA6Ond541Wq1KCoqQkNDAywWCy5duoSEhATcunULVVVVsFgsyMvLQ1xcHMaPH4+wsDCUlpYCAM6cOYO4uDjvfRoi8qvs89dxJNe1gLf25iOGhyE1eXqvgKf+4XQkHxUVhfXr1yMlJQVmsxmxsbFYtWoVvv/972Pjxo0wmUyIj49HQkICAGDfvn3IyMhAU1MTpk+fDr1e7/MPQUS+l3HEgHvGFpePX7dkOue9y4Ag2muk+xHbNf4l9xrlXh8g/xql1Gcoq8aJC5+jqdUi6Xt4uiRBMF1DX3PWruFTSkRkl6GsGkdyyyWfxzVn5IUhT0R2vZv/uaTjhw5WYtVPHmOLRmYY8kRk4057hiN3eWPIExEA96ZGjosYzICXOe4MRUQAOndrkhrwu1M1viuIvIIjeaIBzN3NtO092ETyxJAnGqDc2a0pTBUCfcLjvLkaQBjyRAOUq5tpK0ME/CxpGoM9QDHkiQYoV1o0nBYZ+BjyRANA1967+pHBWDZvEiKGh9kN+ojhYdi7IdYPVZIvMOSJgpi9fVbrHrTgnXPXEfvEGFz+tLpby4ZrvAcfhjxREDKUVeOt3HL0NSOyrb0D124asSZxqm2Ez820gxNDnijIuLqJtrHBBM2MMQz1IMeQJwoSUp9Y5f6qAwNDnigI2Ou9O8Le+8DBkCcKcIayakkBPyg0BKsX8YGmgYIhTxSg3FkxclzEYPwu/aey2fCCfI8hTxRA3N2pCeB6MwOVSyGv1+thNBqhVHYevmvXLty+fRu///3vAQBxcXHYunUrAKCiogIZGRlobGzE7NmzsXPnTtt5ROQ+d5YCBrgswUDnNH1FUURlZSUKCgpsYd3S0oLU1FTk5+dj+PDhWLVqFYqLi/HjH/8YW7Zswe7duxEdHY309HScOnUKKSkpPv8gRMHMUFaNo3nlkLL9MRcTI8CFkK+srIQgCEhNTYXRaMRzzz2HZcuWoaOjAy0tLQgPD0d7ezvCwsJw9+5dtLa2Ijo6GgCg0+lw4MABhjyRm5w91GSPQgDWLZnOcCcALoR8Q0MDNBoNduzYgdbWVuj1ekyaNAmbNm1CYmIiBg0ahDlz5uCpp57ClStXoFarbeeq1WrU1NT49AMQBSt3N9JmwFNXTkM+JiYGMTExAIDw8HCsWLECJ06cwN27d/HRRx9h2LBh+Ld/+zccPXoUTz3V+6aOIAiSCoqIGCrp+K7U6mFun9tfWKPn5F4f4HmNBaV3cPS/KiSfl6SZiGfnT3F63EC4hr4m9/qsnIZ8SUkJzGYzNJrObb5EUcRf//pXrF27FhEREQA62zInTpxAYmIi6uvrbefW1dUhMjJSUkFGYyM6pDQev6VWD5P9tDDW6Dm51wd4VqPUh5qsut5cdfa9g/0a9gc51adQCA4Hx05D/uHDhzhw4ABOnjwJs9mMnJwcbNy4ERcuXEBzczMGDx6Mixcv4oknnsD48eMRFhaG0tJSzJo1C2fOnEFcXJxXPxBRsPrX/7yEr5vMks7homLkjNOQ12q1uHr1qu1ma0pKCtasWYPQ0FDodDqoVCo88cQTePHFFwEA+/btQ0ZGBpqamjB9+nTo9XqffwiiQLf3vY8lB3xqMnvv5JwgiqL03ogPsV3jX3KvUe71Aa7X6O6DTZ7Oew+ma+gvcqrP43YNEXmfO713jtzJHQx5on5kKKvGO+cq0NYu7bfVcRGDGfDkFoY8UT9wd0kCgGvOkGcY8kQ+5s5TqwDDnbyDIU/kY6cLb7oc8FxMjLyNIU/kA+7MnGHAky8w5Im8rKD0jlv9d4XEJUCIXKHwdwFEwebdcxVu3WBta+/A6cKb3i+IBjSO5IncZCirxunCmzA2mKAQgA6xc5kBY4PJ7ff05FwiexjyRG7oOSXS+pC2KyEdMTysz2OtXyPyFoY80be6jsydLfz1br57LRlliABd/GQAwDvnrqOtvaPb101mCwxl1bz5Sl7DnjwRrE+iXreNro0NJhzJLUf2+eu9js0+fx0ms/OED1N1v5EqCEC7RbT13dckTkWosvsxjS3teOfcdRjKqt39KETdcCRPhM657D1H1QDw0Sf3UHDlHqzL+AmAy3Pezd8uXTBkUAhM5g60fzv0NzaY8M6564h9Yozd5Q2sN2A5midvYMhTQJLSWrF3zpBBIRAEAY0t7U5vlnZdp1VKh8bap7c3V76tvQOFV/peoIw3YMlbGPIUcKytFevI2zoyBtBn0BvKqvH22QrbaLpr8PorUB2tqK3glHnyEvbkKeDYa604m2P+3l//ny3gA4EbWyoQ2cWRPAWcvkbexgYT1mZd7NW+MZRVo7Gl3ac1CUL3to6nhgwK8d6b0YDmUsjr9XoYjUYolZ2H79q1C0ajEQcPHkRzczPmzZuHjIwMAEBxcTEyMzNhMpmQmJiItLQ031VPAc2dvjrg/IGjru2bL/7xtVsbY0sRpgqBySxtdyeg83M0trTbPVfgEgfkJU5DXhRFVFZWoqCgwBbyd+7cwS9+8Qt88MEHiIiIwJo1a1BYWIi5c+ciPT0d2dnZGDt2LF566SUUFhYiPj7e5x+EAos7fXUrXfzkbv11e9raO9zaWk8qbcw4t3+IOPpB5evfPGjgcBrylZWVEAQBqampMBqNeO6559DW1oakpCSMGdP5H+P+/fsRFhaGa9euYeLEiZgwYQIAIDk5Gfn5+Qx56sVRX92V0bzFhf66rwPeuh3ftZtGr9+85ZOv5C1OQ76hoQEajQY7duxAa2sr9Ho9LBYLYmNjsW7dOtTV1UGr1WLz5s2ora2FWq22nRsZGYmamhqffgAKTI766s5IWZ/dV5Qh37VTnpwc4fJo3pXefahSYXsqlshTTkM+JiYGMTExAIDw8HCsWLECn3/+OQwGA7KzsxEeHo4NGzYgJycHKpWq1/lSe4uOdh13Rq0e5va5/YU1fvs9HhmMugctdl939P0LSu+49IMgTBUCQQBa23wzmm+3iDhTdAvPzp+Cz24/6PO4QaEhMLVZMOqRwdAnTsObJz7u81gBsB03f9YEH1T9Hf479Jzc67NyGvIlJSUwm83QaDQAOnv0I0aMgEajwciRIwEACxcuxLVr15CUlIT6+nrbubW1tYiMjJRUkNHYiA435o+p1cNQV/dQ8nn9iTV+Z9m8Sb3WbglVKrBs3qQ+v7+hrBrv5n/u9L0jhofhyckR+L8OHjbyhroHLaire2j3h5XVoX/t3qoc2cdN44jhYdi7Ifa79/bh3wH/HXpOTvUpFILDwbHTefIPHz7Enj17YDKZ0NjYiJycHGi1WhQVFaGhoQEWiwWXLl3CjBkzEBUVhVu3bqGqqgoWiwV5eXmIi4vz6gei4KCZMQZrEqfaes8Rw8OwJnGqw4eZjuaVO5zFogwRkJo8HXs3xOLaTaNbC4gBwLFtC7r9n6P+uKGsus+v23tdFz8Zocru/9mxPUO+5HQkr9VqcfXqVSxbtgwdHR1ISUnBnDlzsH79eqSkpMBsNiM2NhbLly+HQqFAVlYWNm7cCJPJhPj4eCQkJPTH56AApJkxxqWbrNaZOI5+wRs6WIkfTo3E6cKbOJJb7nZN9p401cVP7vM9TxfehC5+st3fSuwFt/XzujN1lMgdgih68xEOz7Fd419yrHHLoctO+/DamHG4/Gm13UXGpNDGjMPqRVN7vb4262Kf5xzbtqDbnH/1I4OxbN4k2Qa3HP+Oe5J7jXKqz1m7hk+8kuy5cqO18Mo9j5YCEARgfrT9gAf6fgDL2pLp+luJnAKAiGvXkOy5Mmfck4AfMigER7cu6DPgAfbSKXAx5En2dPGTEeJkJq67qzaGKhVIeeZxp8dJvVFMJBds11BAcDRSF5x83REpQe3qjWIiOeFInmTNOrPGUYa726mJGB7G0Kagx5E8yVpf2/J5Sg79dHdX4SSSgiFPsuaLXZvkEKierMJJJAVDnmTN2drxUt7H38HelaercBK5iiFPsmbvaVJXDR2sxKqfPCbL0PRkFU4iKRjyJGuaGWPwX8W3cM/Y9yJgPSlDBPwsaZosw93K2cNVRN7CkCfZ2vvex6io+trl4+U8cu9Jyno3RJ5gyJPsGMqq8VZuuaSpkT2X6pU7LlRG/YUhT7LQdTqhVIE6AubDVdQfGPLkdz2nE0rBETCRYwx58jt3HniaNnEEtqx6ykcVEQUPLmtAfie1RcOAJ3IdR/LU73o+zj90sBKNLe1OzwtRCNi8MgYzvjfC90USBQmGPPWr7PPX8dEn322wbWwwQRA657a397Epa5gqBPqEx6GZMYYbchBJ5FLI6/V6GI1GKJWdh+/atQtRUVEAgDfeeAMPHjxAVlYWAKCiogIZGRlobGzE7NmzsXPnTtt5NHB13lytQFt77yAXRSBEAfyPIZ0PCCmEzqWDeVOVyHNO01cURVRWVqKgoKBXWBsMBuTk5GD+/Pm217Zs2YLdu3cjOjoa6enpOHXqFFJSUrxeOAUOQ1k13sorh6PdhE1mEYf/V+DMcycKFE5vvFZWVkIQBKSmpuLZZ5/FH/7wBwDA119/jf379+Pll1+2HXv37l20trYiOjoaAKDT6ZCfn++bykn2DGXV2HLoMo7kOg54IvIdpyP5hoYGaDQa7NixA62trdDr9Zg0aRLef/99pKWl4f79+7Zja2troVarbX9Wq9WoqamRVJCjXcedUauHuX1ufwnWGgtK7+DdcxWof9CCoeEqNDabJT2xOixc5fL3DdZr2J/kXh8g/xrlXp+V05CPiYlBTEwMACA8PBwrVqzA5s2bodPpoNFocPr0aduxop3hmiBI23zTaGxEhxt7uQXCDblgrbHnw0wPm82SzhcEYOXCKS5932C9hv1J7vUB8q9RTvUpFILDwbHTkC8pKYHZbIZGowHQGeQzZ87E5cuXsXTpUnzzzTdobm7Gb37zG6xZswb19fW2c+vq6hAZGemFj0Fy5snuTV1nzhCR9zkN+YcPH+LAgQM4efIkzGYzcnJysHPnTtvo/vTp0/jb3/6G9PR0AEBYWBhKS0sxa9YsnDlzBnFxcb79BOR37q6Bro0Zh9WLpnq5GiLqymnIa7VaXL16FcuWLUNHRwdSUlJsAW/Pvn37kJGRgaamJkyfPh16vd6rBZO87H3vY8nncGokUf8RRHuNdD9iT96/pNa4NuuipPdPTZ7uUbgH4zXsb3KvD5B/jXKqz+OePJE3BMJuTUTBiCFPLuu5JEGYKsSl89h7J/Ifhjy5xN5WfCazxeE5gbQdH1GwYsiTQ4ayahzLK0cfa4cBAEIEdPs6WzNE8sGQJ7t6tmYcsYjAsW0LfFwREbmDm4ZQL1ICHuicEklE8sSRPNkYyqpxpsiAugctks4LxE20iQYKhjwBkD56t9LGjGPvnUjGGPIDnKPNPJzh1Egi+WPID2CuzJyxJ0QhYO1izp4hCgQM+QGo60baUnH0ThRYGPIDTM+1313BBcWIAhdDfoAwlFXjxIXP0dTq+CnVrjhqJwp8DPkBwJ2ZMwx4ouDAkA9yhrJqSQE/LFyFlQunsDVDFCQY8kFIamsmVKnAmsSp0MwYI6t1sonIcwz5IGMoq8aR3HKXj1cIsAU8EQUfl0Jer9fDaDRCqew8fNeuXbh06RLOnTsHAIiPj8cvf/lLAEBxcTEyMzNhMpmQmJiItLQ0H5VOXblzYxUA1i3xbKcmIpI3pyEviiIqKytRUFBgC/ni4mIUFRUhJycHgiBg/fr1uHDhAp5++mmkp6cjOzsbY8eOxUsvvYTCwkLEx8f7/IMMZFySgIj64jTkKysrIQgCUlNTYTQa8dxzz2Hu3LnYtm0bQkNDAQCTJ0/GvXv3cO3aNUycOBETJkwAACQnJyM/P58h70PuBDw38yAaOJyGfENDAzQaDXbs2IHW1lbo9XpMmjQJsbGxAIDbt2/j7NmzOHnyJD777DOo1WrbuZGRkaipqfFd9QOUu+vNeLqJNhEFHqchHxMTg5iYGABAeHg4VqxYgcLCQsTGxuLGjRt46aWXsHXrVvzTP/0TPv30017nC4IgqSBHu447o1YPc/vc/uJpjRmHi3D1C6Pk86J+EIFn509x6Vi5X0e51wfIv0a51wfIv0a512flNORLSkpgNpuh0WgAdPbolUolSktL8eqrryI9PR2LFy8GAIwePRr19fW2c2traxEZGSmpIKOxER0d0ldEDISpf57WmH3+uuSAFwRgfnTng02ufG+5X0e51wfIv0a51wfIv0Y51adQCA4Hx053hnr48CH27NkDk8mExsZG5OTkYMGCBfj5z3+Offv22QIeAKKionDr1i1UVVXBYrEgLy8PcXFx3vkkhIIr0p9aPbp1AZ9cJRrAnI7ktVotrl69imXLlqGjowMpKSnIz8+HyWRCVlaW7biVK1di1apVyMrKwsaNG2EymRAfH4+EhASffoBgt/e9j1FR9bWkc8JUIdAnPM7+OxFBEEVRem/Eh9iu+Y7UgPdGuMv9Osq9PkD+Ncq9PkD+NcqpPmftGj7xKkPurPfOBcWIyB6GvMxInfcuAFjPqZFE1AeGvAy4uw0fN/MgImcY8n4mdUExoHNa5HquOUNELmDI+5GhrBpvSQx4ZYiAnyVxE20icg1D3g/cWW+GSxIQkTsY8v3MnXnvXC2SiNzFkO8nhrJqnPw/l/Cw2ezyOWzNEJGnGPL9wJ32zLiIwdidqvFRRUQ0UDDkfcid1gzXeicib2LI+4B11ozUxRmmTRyBLaue8klNRDQwMeS9yN19VgEuS0BEvsGQ95LO3Zquo629w+VzuCQBEfkaQ95D7iwmBvCpVSLqHwx5D7gzawbgzVUi6j8M+R66jswdLQBmKKuWHPATIodg59q53iqViMgphvy37M2IMTaY8M656wDQK+hPF96U9P7TJo7AnlfjZbPRABENDAx5ABlHDLhnbLH7tbb2DpwuvNkr5F3twSsEID6aM2eIyD9cCnm9Xg+j0QilsvPwXbt24csvv8Thw4dhNpvxL//yL3j++ecBAMXFxcjMzITJZEJiYiLS0tJ8V72HXJ3Pbi/QI4aHOQz6Y9sWeFgdEZHnnIa8KIqorKxEQUGBLeRramqQlpaG06dPIzQ0FCtXrsTcuXPx6KOPIj09HdnZ2Rg7dixeeuklFBYWIj4+3ucfRIrO6Y4VaGt37XGliOFhvV7TxU/u8weENmachxUSEXmH05CvrKyEIAhITU2F0WjEc889hyFDhuBHP/oRRowYAQBYtGgR8vPzMWfOHEycOBETJkwAACQnJyM/P19WIe/OjBhd/ORer1nbN11/WAgCMJ+tGSKSEach39DQAI1Ggx07dqC1tRV6vR6JiYlQq9W2YyIjI3Ht2jXU1tb2er2mpkZSQY52HXdGrR7m8OsZh4tw9QujpPecEDkEz86f0uv1gtI7OFN0C+Z2EepHBkOfOA3zZ03wuEY5kHuNcq8PkH+Ncq8PkH+Ncq/PymnIx8TEICYmBgAQHh6OFStWIDMzEy+//HK34wRBgCj2bl4IgiCpIKOxER0dUld96bzgjmauZJ+/LjngrWvJ9HzfnguP1T1owZvvfYyGh60O5747q1EO5F6j3OsD5F+j3OsD5F+jnOpTKASHg2OnIV9SUgKz2QyNpnPZW1EUMX78eNTX19uOqa2tRWRkJEaPHm33dTkovOJ6i6avZX4d7ccqisC7+RV8wImIZEXh7ICHDx9iz549MJlMaGxsRE5ODvbu3QuDwYCvvvoKLS0t+Mtf/oK4uDhERUXh1q1bqKqqgsViQV5eHuLi4vrjczjlyi8HYaoQpCZPtxvwe9/72OmG2yaz9N9AiIh8yelIXqvV4urVq1i2bBk6OjqQkpKCWbNmIS0tDXq9HmazGStWrMCTTz4JAMjKysLGjRthMpkQHx+PhIQEn38IVygEx0Hf1zK/hrJqHMsrh4X5TUQBSBDtNdL9yJc9+b5m1fS1zK/UmTgCgKMO5sfLqY/XF7nXKPf6APnXKPf6APnXKKf6PO7JBwtriBdeuYcO0fmTqO6sTTOf8+OJSGYGTMgDnUHv6hx2qWvTcNMPIpKjARHy2eevuzyCt3J1bRpuuE1Echb0Id9zTnuHCFsbxlHQO1ubRhki4GdJ0zhlkohkzekUykBmKKvuFvBdOZs3r4ufjFBl78tjnWb5+y1aBjwRyV7QjeS7bvqhcPCwrbMJPNYAd2UDESIiuQqqkO+5mbajIHf0A8BKM2MMQ52IAlrAh7yhrBonLnyOplaLpPPiozndkYiCX0CHvLtPo06bOILTHYloQAjokD9deNOlgLcuacC+OhENNAEd8q7MZQ9VKrAmcSqDnYgGpICeQmlvW76eX2fAE9FAFtAjeV38ZLs9eT6oRETUKaBD3hriXWfXDB2sxKqfPMaAJyJCgIc88N1cdjkt/UlEJBcB3ZMnIiLHGPJEREGMIU9EFMQY8kREQUx2N14Vrqwc5oNz+wtr9Jzc6wPkX6Pc6wPkX6Nc6nNWh+w28iYiIu9hu4aIKIgx5ImIghhDnogoiDHkiYiCGEOeiCiIMeSJiIIYQ56IKIgx5ImIghhDnogoiAVFyOfm5iIpKQnPPPMMjh8/7u9yAAAHDx7E4sWLsXjxYuzZswcAUFxcjOTkZPz0pz/F/v37/Vzhd9544w1s27YNAFBRUYHly5dj0aJF+Pd//3e0t7f7ra6LFy9Cp9MhISEBu3fvBiC/a/jhhx/a/p7feOMNAPK4ho2NjViyZAn+8Y9/AOj7uvmz1p41vv/++1iyZAmSk5Px2muvoa2tza819qzP6vjx41i9erXtz/fu3cPzzz+PhIQEvPLKK2hqauqX+lwmBrjq6mpRq9WKDx48EJuamsTk5GTxxo0bfq3p8uXL4j//8z+LJpNJbGtrE/V6vZibmyvGx8eLX375pWg2m8W1a9eKBQUFfq1TFEWxuLhYnDt3rrh161ZRFEVx8eLF4ieffCKKoii+9tpr4vHjx/1S15dffinOmzdPvH//vtjW1iauWrVKLCgokNU1bG5uFn/4wx+KRqNRNJvN4ooVK8TLly/7/RpeuXJFXLJkiThjxgzxzp07YktLS5/XzV+19qyxsrJSfOaZZ8SHDx+KHR0d4i9/+Uvx7bff9luNPeuzunHjhvj000+LL7zwgu21F198UczLyxNFURQPHjwo7tmzx+f1SRHwI/ni4mL86Ec/wogRIxAeHo5FixYhPz/frzWp1Wps27YNoaGhUKlUmDx5Mm7fvo2JEydiwoQJUCqVSE5O9nudX3/9Nfbv34+XX34ZAHD37l20trYiOjoaAKDT6fxW44ULF5CUlIQxY8ZApVJh//79GDx4sKyuocViQUdHB1paWtDe3o729nYolUq/X8NTp05h+/btiIyMBABcu3bN7nXz5993zxpDQ0OxY8cODB06FIIg4LHHHsO9e/f8VmPP+gCgra0Nr7/+OjZt2mR7zWw24+9//zsWLVrUr/VJIbtVKKWqra2FWq22/TkyMhLXrl3zY0XAlClTbP/79u3bOHv2LFavXt2rzpqaGn+UZ/P6668jLS0N9+/fB9D7WqrVar/VWFVVBZVKhXXr1qGurg5arRZTpkyR1TUcOnQoNm3ahMTERAwaNAhz5syBSqXy+zX89a9/3e3P9v4bqamp8evfd88ax48fj/HjxwMAvvrqKxw/fhyZmZl+q7FnfQDwH//xH1i+fDkeffRR22sPHjzA0KFDoVQq+7U+KQJ+JC/aWURTEOSxBOiNGzewdu1abN26Fd/73vd6fd2fdX7wwQcYO3YsNBqN7TU5XUuLxQKDwYC9e/fi1KlT+PTTT3v1RgH/XsPr16/jT3/6Ez766CMUFRVBoVDg8uXLvY7z97/Hvv5e5fT3bVVTU4M1a9Zg+fLlmDt3rmxqvHz5Mu7fv4/ly5d3e10u9TkS8CP50aNHo6SkxPbn2trabr9i+UtpaSleffVVpKenY/Hixfjb3/6G+vp629f9XefZs2dRV1eHpUuX4ptvvkFzczMEQehWY11dnd9qHDVqFDQaDUaOHAkAWLhwIfLz8xESEmI7xt/XsKioCBqNBhEREQA6f1U/evSobK6h1ejRo+3+2+v5ur9rvXnzJlJTU/HCCy9g7dq1AHrX7q8a8/LycOPGDSxduhTNzc2or6/H5s2bsXfvXjQ2NsJisSAkJMTv19CegB/J//jHP4bBYMBXX32FlpYW/OUvf0FcXJxfa7p//z5+/vOfY9++fVi8eDEAICoqCrdu3UJVVRUsFgvy8vL8Wufbb7+NvLw8fPjhh3j11VexYMECZGZmIiwsDKWlpQCAM2fO+K1GrVaLoqIiNDQ0wGKx4NKlS0hISJDVNZw6dSqKi4vR3NwMURRx8eJFzJkzRzbX0Kqvf3vjx4+XTa2NjY1Yt24dNm3aZAt4ALKpMTMzE+fOncOHH36I3bt3Y+bMmfjtb38LlUqF2bNn4+zZs36tz5GgGMmnpaVBr9fDbDZjxYoVePLJJ/1a09GjR2EymZCVlWV7beXKlcjKysLGjRthMpkQHx+PhIQEP1Zp3759+5CRkYGmpiZMnz4der3eL3VERUVh/fr1SElJgdlsRmxsLFatWoXvf//7srmG8+bNQ3l5OXQ6HVQqFZ544gm8+OKLeOaZZ2RxDa3CwsL6/Lcnl7/vP/7xj6ivr8exY8dw7NgxAMCCBQuwadMm2dTYl+3bt2Pbtm04fPgwxo4dizfffNPfJXXDnaGIiIJYwLdriIiobwx5IqIgxpAnIgpiDHkioiDGkCciCmIMeSKiIMaQJyIKYgx5IqIg9v8Bs2cMwO9rmtcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD7CAYAAACPDORaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAqZElEQVR4nO3de1BUZ5438O9pGloNUkZshhENlSExGpwFoim3Q4aLayKoGKu1siMVOhtCasxsqTjvMrmAuFjsYpRZ8/pazlaMwyRoYkhWF2UirBuV8UK5BYm6wyVrNBIHAbkkC43SNN3n/YPplkvD6W666dPd309Vqqabc+DXjfPth995zvMIoiiKICIin6TwdAFEROQ+DHkiIh/GkCci8mEMeSIiH8aQJyLyYQx5IiIfxpAnIvJhSk8XMNr33/fBbHZ86n5oaDC6uvRuqMh1WOPkyb0+gDW6gtzrA+RTo0Ih4OGHHxr367ILebNZdCrkLefKHWucPLnXB7BGV5B7fYB31GhXu+bMmTPQarVITU1FYWHhiK8dPnwYGRkZ1seNjY3QarVYuXIlcnNzMTg46NqKiYjIbpIhf/v2bezYsQMHDhzAiRMn0NDQgOrqagDAN998g/fee2/E8Tk5OcjPz0dVVRVEUURZWZl7KiciIkmSIX/69GmsWrUK4eHhCAwMxN69exETE4OBgQHk5+djy5Yt1mNbWlrQ39+P2NhYAIBWq0VlZaXbiicioolJ9uSbm5sRGBiITZs2obW1FUlJScjOzsauXbuwfv16zJs3z3rs3bt3oVarrY/VajXa29sdKig0NNih44dTq2c6fe5UYY2TJ/f6ANboCnKvD/COGiVD3mQyoba2FqWlpZgxYwZef/11fPrpp2htbcVbb72Fy5cvW481m80QBMH6WBTFEY/t0dWld+pihlo9Ex0dvQ6fN5VY4+TJvT6ANbqC3OsDJl9jTX0bPjjViIHBB3mnCgyALuUJaKLD7f4+CoUw4eBYMuTnzJkDjUaD2bNnAwBWrFiBr776CtevX8cLL7yAe/fuobOzE9nZ2cjJyUFHR4f13M7OToSFhdldLBGRPyitasLZr+6Med5gNOFQRSMAOBT0E5HsyScnJ+PChQvo6emByWTC+fPn8dRTT+HUqVMoLy9HYWEhFi9ejHfffRcRERFQqVSoq6sDAJSXlyMhIcElhRIRebua+jZsKj5rM+AtzKKIY9U3XPYzJUfyMTExyMrKQnp6OoxGI+Lj47F+/fpxjy8uLkZeXh70ej2io6Oh0+lcViwRkTeqqW/D+ycbYG8juqvH4LKfLchtZyj25D1L7jXKvT6ANbqC3OurqW/Dv1/4Fh3f30doiAraxKhx2yt7Pv4Sjc0/OPT9Q0NU2PPLeLuOnXRPnoiIHhi6YNqEgUEzgKFR9wenmgCM7KM7Onq3UAgCtIlRriqXC5QRETniWPUNa8BbDAyaR/TRS6uacNCJgFcGCHh1zSKXXXQFOJInInLIeP3yrh4DNr9bjf4BE0xmm4dMKDluLjJWLpxkdWNxJE9E5IDQENW4X+vrl1fAAwx5IiKHaBOjEKR0XXS6M+ABtmuIiBxi6ZdbZtc4S2pWjqsw5ImIHPTNn39wKuAXRc5Czsan3FDR+BjyREQOcGbeO+CZgAcY8kREdiutanIq4N3dd58IQ56ISEJNfRs+Ov01+vpNDp3nyXC3YMgTEY3D1nLA9nBmyWB3YcgTEdngTO9dEICsNU/KItwtGPJERMM4u+aMnEbvwzHkiYj+YrzNPCYih777RBjyRERwvD0zc0Ygfv43j8tu5D4aQ56I/Jqzo/dfvfS0rNe8t2DIE5HfcnT0rgwQ8Moq1y4F7G52hfyZM2ewf/9+3L9/H/Hx8cjLy8Mnn3yC0tJSCIKAxYsXo6CgAEFBQWhsbERubi76+vqwdOlSFBQUQKnkZwkRyYczo/e5odNR+JrGTRW5j+RSardv38aOHTtw4MABnDhxAg0NDfjggw9w6NAhHD16FCdOnIDZbMZHH30EAMjJyUF+fj6qqqogiiLKysrc/iKIiOyVd7DGqfaMNwY8YMdI/vTp01i1ahXCw4f+PNm7dy8GBwfx2GOPITh4aF/BBQsW4M6dO2hpaUF/fz9iY2MBAFqtFvv27UN6err7XgERkQRnRu6A59abcSXJkG9ubkZgYCA2bdqE1tZWJCUlITs7GxEREQCA7u5uHDlyBEVFRbh79y7UarX1XLVajfb2dvdVT0Q0AWfnvAO+EfCAHSFvMplQW1uL0tJSzJgxA6+//jqOHz8OrVaL9vZ2ZGVlYf369Vi2bBnq6uogCIL1XFEURzy2x0S7jktRq2c6fe5UYY2TJ/f6ANboCpOt71zdbacCPlCpwJYXY5G0ZL7ksXJ/DwE7Qn7OnDnQaDSYPXs2AGDFihW4du0aYmJikJWVhYyMDGRmZgIAwsPD0dHRYT23s7MTYWFhDhXU1aWH2ez4565aPVP205lY4+TJvT6ANbqCK+r7fUW9QwE/+o5VqZ8vl/dQoRAmHBxLhnxycjLeeOMN9PT04KGHHsL58+eh0Wjw6quvIjs7G+vWrbMeGxERAZVKhbq6OixZsgTl5eVISEhwyQshIhrN1uqQwdOV2LhiwbgbbtvirTNn7CEZ8pYRe3p6OoxGI+Lj42EymdDZ2YmSkhKUlJQAAJYvX46tW7eiuLgYeXl50Ov1iI6Ohk6nc/uLICL/M97FVP39QRw82WD39/HlgAcAQRRFZ65JuA3bNZ4l9xrlXh/AGl1Bqr6a+jaHgnw8k7m4Kpf3cNLtGiIiufmw8utJnW9p6XjTnavOYsgTkVcprWqCwejYDk2j7dvqP9cKJe94JSKSk+orjt/UNFxoiMpFlXgHhjwReRUnLtlZKQQB2sQo1xXjBdiuISJZqalvw+/+cAYms2u/r1x3bnI3hjwRycZkZ80oAwQMmkSEhqigTYzyu0C3hSFPRLJxrPrGpM43m0X87s3lLqrGN7AnT0Sy4chdqrZMpl/vqziSJyKPsyxPMFkKx9ZD9AsMeSLyqJr6NvyuogEmF4zCE2PnTv6b+BiGPBF51LHqG5MOeIUwFPAZKxe6pigfwpAnIo+ypw8fGqJCV4+Bs2acwJAnIo+yBPhEX9/zy/gprMi3MOSJaMrU1LfhWPWNEaNybWLUhHPj/e0OVVfjFEoimhKlVU04eLLBOmrv6jHgg1NNAIDkONsXTJPj5rI1M0kcyRORW423uQcADAyacaz6Bvb8Mh6PzZtlHeWrH56Odc8+yoB3AYY8EbnNno+/RGPzDxMeYxnZa6LDraEulw05fIFd7ZozZ85Aq9UiNTUVhYWFAIBLly4hLS0Nzz//PPbu3Ws9trGxEVqtFitXrkRubi4GBwfdUzkRyVppVZNkwAP+t/TvVJMM+du3b2PHjh04cOAATpw4gYaGBlRXV+Ptt9/GgQMH8Pnnn+NPf/oTqqurAQA5OTnIz89HVVUVRFFEWVmZ218EEclLTX3buC2a0Xhh1b0k2zWnT5/GqlWrEB4+9GfU3r170dzcjMjISMyfPx8AkJaWhsrKSjz22GPo7+9HbGwsAECr1WLfvn1IT0933ysgIlkYPnPG3uUFeGHV/SRDvrm5GYGBgdi0aRNaW1uRlJSExx9/HGq12npMWFgY2tvbcffu3RHPq9VqtLe3u6dyIpIFy7ozff0PtuSzZ6Gw5DjeoToVJEPeZDKhtrYWpaWlmDFjBl5//XVMmzYNgvDgo1oURQiCALPZbPN5R0y067gUtXqm0+dOFdY4eXKvD/CPGn/72RV8XtPs8HmBSgW2vBiLpCXzJzzOH97DqSAZ8nPmzIFGo8Hs2bMBACtWrEBlZSUCAgKsx3R0dCAsLAzh4eHo6OiwPt/Z2YmwsDCHCurq0sPsxHqh3nA1njVOntzrA/yjxommRU5k+Oh9op/vD++hqygUwoSDY8kLr8nJybhw4QJ6enpgMplw/vx5pKSk4Ntvv0VzczNMJhMqKiqQkJCAiIgIqFQq1NXVAQDKy8uRkOA/u6IT+brSqiZkvXPG7oC39OZDQ1R4Le1Jtmc8QHIkHxMTg6ysLKSnp8NoNCI+Ph4bN27ET37yE2zevBkGgwGJiYlISUkBABQXFyMvLw96vR7R0dHQ6XRufxFE5H6Ojt6DlAq8nLqQF1Y9TBBFUVZ7qbBd41lyr1Hu9QG+WaM9NzUNFzxdiY0rFjgd8L74HrqLVLuGd7wS0bic6b1z1oy8MOSJyCZHA14VGABdyhNsz8gMQ56IRiitakL1lTt2b4odpBTwr/+Q7N6iyGkMeSKycnT0LgB4OXWR+wqiSWPIE5FV9RX7A14ZIOCVVYvYnpE5hjyRHxu9U5O9LZpZDwXiXzb/zL3FkUsw5In8VE19Gz441YSBQTMA+zbUBjh7xtsw5In81LHqG9aAl8Jg917c45XIT000crcsR6AQGPDejiN5Ij8wuvf+d2uiERqishn0oSEq7PllvAeqJHdgyBP5sKG+eyMGBh9cUe3qMWD/p1fxzOIf4eJ/t41o2QQpFdypycewXUPko0qrmnDwZMOIgLcwGE24dqMLL6cutO6xGhqi4oJiPogjeSIfU1Pfht9VNMAkMR2yq8cATXQ4Q93HMeSJfIgjd6xaRvDk2xjyRD7C0eWA2Xv3D+zJE/mA0qomhwJ+lSaSbRo/wZE8kZeqqW/DR6e/Rl+/yaHzFkXOwusbYmWx4QW5H0OeyMvU1Lfh/ZMNcGZLN97Y5H/sCvmMjAx0d3dDqRw6fOfOnejt7cXu3bthNpvx5JNPorCwEEFBQWhsbERubi76+vqwdOlSFBQUWM8josmpqW/DwZMNDp/HcPdfkj15URRx69YtlJeXW/+LiYlBbm4u9u7di4qKCvT396O8vBwAkJOTg/z8fFRVVUEURZSVlbn9RRD5i49Of+3wOa+lPcmA92OSQ+ybN28CADIzM/HDDz/gxRdfxEsvvQSTyQS9Xg+TyQSDwQCVSoWWlhb09/cjNjYWAKDVarFv3z6kp6e79UUQ+TJHZ81YcDs+AuwI+Z6eHmg0Gmzfvh1GoxE6nQ6PPvoo/vEf/xEZGRkIDg7GvHnzkJKSgvr6eqjVauu5arUa7e3tbn0BRL7MmYB/aFoA/l92onsKIq8jGfJxcXGIi4uzPt6wYQMqKirw1VdfoaKiAvPmzUNRURGKioqwZs0aCIJgPVYUxRGP7REaGuzQ8cOp1TOdPneqsMbJk3t9gOtqdDTgAxQCNmlj7Pr5cn8f5V4f4B01SoZ8bW0tjEYjNBoNgKHgvnz5MhYvXoxHHnkEAPDiiy8iOzsbWVlZ6OjosJ7b2dmJsLAwhwrq6tLDbO/2NMOo1TNlPyWMNU6e3OsDJlejvUsS2BIaooI2MQrRj8yS/Plyfx/lXh8gnxoVCmHCwbFkyPf29mLfvn04evQojEYjjh8/jt/85jfYtm0bOjs7MWfOHHzxxRf46U9/ioiICKhUKtTV1WHJkiUoLy9HQkKCS18Qka/KO1iDO133HTrHEuzsu9N4JEM+OTkZV69exbp162A2m5Geno64uDhs3boVOp0OAQEBiIyMxM6dOwEAxcXFyMvLg16vR3R0NHQ6ndtfBPmPc3W38fuKeuu66L4ScI4GvCAAWWue9InXTu4liKLozD0VbsN2jWfJucaa+jZ8WPk1DMYHd3gGKRWyWx7XkffQkQXFLJQBAl5ZtWhSr1nOv2dA/vUB8qlx0u0aIrk4Vn1jRMADwMCgGceqb8gq5O1hazMPKQoBeP+N5W6sinwRQ568xnh7kk60V6ncODNyt0iMneviasgfMOTJa0y0J6k3cObCqgWXJSBnMeTJa2gTo2z25L1hXfTSqiaHAz5AISBz9eR670QMefIamuhwhMyc5pWza6qv2N+i4XIE5EoMefIqSUvmI/qRWQ6dU1PfhmPVN6b0g8HZtd7ZliFXY8iTTxuaxdKEgUEzgKGLtB+cagIAtwX9ubrbTt21qgwQ8Ni8WW6pifwXt/8jn3as+oY14C0s0y7d5cNTjU4tSzBoEt1aF/knjuTJp7lz2uV4baDO752bQeOquoiGY8iTT3PXtMuJ2kBzHp6OjgmCXiEAD8/07umg5D3YriGfpk2MQpBy5D9zV0y7HK8NdPBkA/oNg5hohe3E2Lluq4toNI7kyadZLq7aO7vGnpk4NfVtE7ZVeu8ZESAAykABBuPY5vy1G114bN4svJy6cMpn/ZD/4QJlU4g1Tp476xvdggGAAAGYPk0J/f1BKATAkX+aoSEq7PllPGrq21DyeSMGh12NtSwyBtj/AeRK/vx7dhW51MgFyoj+QmqUbqsFYxIB/f1BAI4FPPDgIurH//k/IwIeGJpJc/Bkw5jj3T29k/wPQ568kqM3OI0eTXf1GFDyeSMuXLvj1CbZ9iqtarJ+SNhjYNCMD041MuTJZRjy5BUsod7dY8CMaQEwGM0jAltqBDzeaNqdAQ84tpyBxcCgiD0ff4mcjU+5oSLyN5xdQ7Jn6ZV39RggAujrN40J7IlucKqpb3NoNO1KTlxeAjC0gXdNfZtriyG/ZNdIPiMjA93d3VAqhw7fuXMnzGYzioqK0NfXhyeeeAK7du1CUFAQGhsbkZubi76+PixduhQFBQXW84icYatXboutGS+WDwh3UgYIYz50LBQCMOMvF24d5Y2boZD8SI7kRVHErVu3UF5ebv0vKioKmzdvxs6dO/GHP/wBAPDZZ58BAHJycpCfn4+qqiqIooiysjL3vgLyefbeBfrQtIAxz9n7AeGsuaHTxw14YGhO/MYVC6AMmGDi/Dh49yu5gmTI37x5EwCQmZmJtWvX4vDhw7h48SJiY2OxcOHQanl5eXl47rnn0NLSgv7+fsTGxgIAtFotKisr3Vc9+QV77wK9bzCPaXG4MyiT4+ai8DXNuPUFCEDGyqH9Z19Ztch6XGiICslxc21+KA3Hu1/JFST7KD09PdBoNNi+fTuMRiN0Oh3Wrl2LGTNmYNu2bbh58yaeeuopvPnmm2hoaIBarbaeq1ar0d7e7tYXQL5Pmxg1Zv66LWZRtLY4LBdq3WH0csDaxCibq06aAWz5v3+E/v7gmBlANfVtuPjf4/fcefcruYpkyMfFxSEuLs76eMOGDSgqKkJoaCg++eQTzJ07F7m5uXjvvffwzDPPQBh2P7coiiMe22OiSf1S1OqZTp87VVij49YmzUTIzGn48FQjOr+/j4muZXb3GFD/3Q9jdpByhf+T/hSSlsy3Wd/RL66j955xxPPisDn2XT0GfFj5NUJmTkPSkvn49ws1435oqR+eDl3qIps/y5Xk9nseTe71Ad5Ro2TI19bWwmg0QqPRABgK7ocffhgxMTGYP3/oH2FqaioOHz4MrVaLjo4O67mdnZ0ICwtzqCDe8epZcq0x+pFZeOcXGqjVM/F3BZXjtmFmh6jw+4p6lwd8ctxc9PT2W3/26JH56IC3xWA04fcV9Yh+ZNaEC5i984uh/6+58/cg19+zhdzrA+RTo9Qdr5I9+d7eXuzevRsGgwF6vR7Hjx/H/v37UV9fj9bWVgDA2bNnER0djYiICKhUKtTV1QEAysvLkZCQ4KKXQjREmxgFW9cxlQECtIlRLunDD++fv5b2JB6bN8s6jRN4MDffcg3A3v655fzxjmcfnlxNciSfnJyMq1evYt26dTCbzUhPT8fSpUuxc+dObNq0CQaDAYsWLcIbb7wBACguLkZeXh70ej2io6Oh0+nc/iLI/0xTBYzYWi94uhJPLwxzSR/esubMcDkHLo67+YgmOtzu6waWELd1PPvw5A52TWDPzs5Gdnb2iOeSkpKQlJQ05tiFCxdap1MSudq5uts2w/HphWG4+N9tk54uaflrYDSpzUeGr3Zp665cS52W7+3o6phEzuJdSuRVPjzVaHNEXX3ljtN3lw6nClTYDFp7Nh/RRIdDEx1u7dVKra9jOZ7InRjy5DVq6tvGvWDpioAHMKIFNJwz7RWGOMkBQ568wlQsTwCMf+GT7RXyVgx58gof/+f/jNtvDxAw5kYkZ3BkTr6IIU+yJ7WKpLMB/9C0AEwLUnJkTj6NIU+y547lCYKUCqQ/9wRDnXweQ55kz1WLjKkCA2AwmjhqJ7/CkCfZG2/6oqNEUcRraU8y3MmvcGcokj1tYhQcX419rIl2jyLyVQx5kr0L1+5MuPKkI7gRB/kbtmtItkqrmnD2K8c2wrb02y3z2W19ncifMORJlvZ8/CUam3+w+3hbi4pxATAihjzJSE19Gz46/fW4SwuMx1Z48w5VoiEMeZKFmvo2m1voSZkovHmHKhFDnjxs+EqNjlgUOQs5G59yU1VEvoMhTx5jWXTM0TXg54ZOZ8AT2YkhTx5zrPqGwwG/ShOJDbx4SmQ3hjxNKWfaM8HTldi4YsGIDTmIyD52hXxGRga6u7uhVA4dvnPnTsTExAAADh8+jKqqKpSWlgIAGhsbkZubi76+PixduhQFBQXW88h/OXNhdXi4E5FzJNNXFEXcunULZ8+eHRPW33zzDd577z1ERkZan8vJyUFhYSFiY2Px9ttvo6ysDOnp6a6vnLxGTX0bDp5ssOvYIKUCL6cuZLATuYjksgY3b94EAGRmZmLt2rU4fPgwAGBgYAD5+fnYsmWL9diWlhb09/cjNjYWAKDValFZWemGssmbfFj5tV3HhYaoGPBELiY5ku/p6YFGo8H27dthNBqh0+nw6KOP4o9//CPWr1+PefPmWY+9e/cu1Gq19bFarUZ7e7tDBYWGBjt0/HBq9Uynz50q/lJj3m8v4Oo3Xfb9vIen43d5z9v9vf3lPXQ3udco9/oA76hRMuTj4uIQFxdnfbxhwwbs2bMHjzzyCN566y1cvnzZ+jWz2QxBeLBeoCiKIx7bo6tLD7MTuzJ7wwU5f6kx72AN7nTZ3nDblnXPPmr3z/SX99Dd5F6j3OsD5FOjQiFMODiWDPna2loYjUZoNBoAQ8G9aNEiXLlyBS+88ALu3buHzs5OZGdnIycnBx0dHdZzOzs7ERYW5oKXQd6itKrJoYBfFDmL7RkiN5IM+d7eXuzbtw9Hjx6F0WjE8ePHUVBQgKKiIgDA5cuXsX//frz77rsAAJVKhbq6OixZsgTl5eVISEhw6wsgz3NmtUiANzURTQXJkE9OTsbVq1exbt06mM1mpKenj2jfjFZcXIy8vDzo9XpER0dDp9O5tGCSF2cCXiEAibFzkbFyoZuqIiILQRRFV+3H4BLsyXuWozVmvXMG9v66BAHIWjO57fd88T30BLnXKPf6APnUOOmePNFozty1GqAQkLl6EfvvRFOMIU92c7b3nhzH1gyRpzDkyS6O7tQEAMoAAa+s4uidyJMY8iTJ0XnvANd7J5ILhjzZ5OiCYrb2WCUiz2PI0xiOLChmwQ2yieRJcoEy8j8f/+f/OHR8ctxc9t2JZIojeQLwYFpkd48BjtylwJkzRPLGkPdzQ/usNmJg0PEb0BjwRPLHkPdjzuzWBLjmzlUimhoMeT/kzB2rFhy9E3kXhryfGWrPNGFg0Cx5rEIAzOLQ9EhtYhRH7kReiCHvJ2rq2/DR6a/R12+y+5xX2ZIh8noMeT/gzLx3Tosk8g0MeT9g70baADBzRiB+/jePM+CJfARD3gc52poJUirwcupCaKLDZbNGNhG5BkPexzjamlEIsAY8Efkeu0I+IyMD3d3dUCqHDt+5cyeamppQWloKQRCwePFiFBQUICgoCI2NjcjNzUVfXx+WLl2KgoIC63nkPs5cWAV4cZXI10muXSOKIm7duoXy8nLrfyEhITh06BCOHj2KEydOwGw246OPPgIA5OTkID8/H1VVVRBFEWVlZW5/Ef6upr4N71c0OBzwiyJnMeCJfJxkyN+8eRMAkJmZibVr1+Lw4cMICgrCjh07EBwcDEEQsGDBAty5cwctLS3o7+9HbGwsAECr1aKystKtL8Df1dS34f2TDXBkp16FMDR7huu9E/k+yT5KT08PNBoNtm/fDqPRCJ1Oh0cffRTx8UNrh3d3d+PIkSMoKirC3bt3oVarreeq1Wq0t7e7r3o/5sxWfK+lsTVD5G8kQz4uLg5xcXHWxxs2bEB1dTXi4+PR3t6OrKwsrF+/HsuWLUNdXR0EQbAeK4riiMf2mGjXcSlq9Uynz50qk63xXN1t/MtHXzq0UiQAxDwWirVJj9t1rNzfR7nXB7BGV5B7fYB31CgZ8rW1tTAajdBoNACGglupVOLGjRvIyspCRkYGMjMzAQDh4eHo6OiwntvZ2YmwsDCHCurq0sNsdnxFRG+Y+jfZGp25qUkQgKTYofVm7PnZcn8f5V4fwBpdQe71AfKpUaEQJhwcS/bke3t7sXv3bhgMBuj1ehw/fhzLly/Hq6++iq1bt1oDHgAiIiKgUqlQV1cHACgvL0dCQoILXgYBzm3mceiN5VxQjMiPSY7kk5OTcfXqVaxbtw5msxnp6en405/+hM7OTpSUlKCkpAQAsHz5cmzduhXFxcXIy8uDXq9HdHQ0dDqd21+EL9vz8ZdobP7BoXOCpyuxccUC9t+JCIIoOjIvw/3YrnnA0YBXBQZAl/LEpMJd7u+j3OsDWKMryL0+QD41SrVreJeSDDmz3vvc0OkofE3jxqqIyBsx5GXGmamRiyJncc47EdnEkJcBZ7fh42YeRCSFIe9hzk6L5B6rRGQPhrwHOdOaUQYIeGXVIgY8EdmFIe8BXJKAiKYKQ36KOTPvnVvxEZGzGPJTpKa+DUe/OI/ee0a7z2FrhogmiyE/BZxpz3DeOxG5AkPejZxpzbjirlUiIguGvBtYN/Jw8DyO3onI1RjyLuTsPqvA0MVVrhZJRK7GkHeRmvo2fHCqCQODZrvPEQBkcWokEbkRQ36SnB29865VIpoKDPlJcGbWDMD13olo6jDkhxlquTRiYHDokunwrfNsHetowM8PewgFmctcUisRkT0Y8n9ha1QuirA+Nzroj1XfcOj7L4qchd1bEmWxyQAR+Q/JPV79Qd7BmglH5dVXxn7N3g09FMLQzBmu905EnmDXSD4jIwPd3d1QKocO37lzJ/r6+lBUVASDwYDU1FRs27YNANDY2Ijc3Fz09fVh6dKlKCgosJ4nN/bOZ7e1G2FoiGrCoOeCYkQkB5LpK4oibt26hbNnz1rDur+/HykpKSgtLcWPf/xj/OIXv0B1dTUSExORk5ODwsJCxMbG4u2330ZZWRnS09Pd/kIcMbr3LkUhjH1Omxg17gfEoshZDHgikgXJds3NmzcBAJmZmVi7di0OHz6Ma9euITIyEvPnz4dSqURaWhoqKyvR0tKC/v5+xMbGAgC0Wi0qKyvd+gIcVVrVhIMnG+wOeABIjJ075jlNdDiy0p5EkPLBJ4DA1gwRyYzkSL6npwcajQbbt2+H0WiETqdDVlYW1Gq19ZiwsDC0t7fj7t27I55Xq9Vob293qKCJdh2XolbPHPdr5+puY/+nV2Aw2n+zEjA0I+ZXLz095vnffnYFlZe/g9ksQqEQkLLsEby+IXZSNcqF3GuUe30Aa3QFudcHeEeNkiEfFxeHuLg46+MNGzZg3759WLJkifU5URQhCALMZjMEQRjzvCO6uvQw22qCS1CrZ447c8XZPVQtSw2M/r55B2twp+u+9bHZLOLzmmbc7zdOuDTBRDXKhdxrlHt9AGt0BbnXB8inRoVCmHBwLBnytbW1MBqN0GiGFs4SRRERERHo6OiwHtPR0YGwsDCEh4ePeL6zsxNhYWGTqd8ljlXfcCjgx1soTGo/1nNX7nD9GSKSFcmefG9vL3bv3g2DwQC9Xo/jx4/jV7/6Fb799ls0NzfDZDKhoqICCQkJiIiIgEqlQl1dHQCgvLwcCQkJbn8RUuyd7qgKDMBraU/aDPg9H38pueG26PgfIEREbiU5kk9OTsbVq1exbt06mM1mpKenIy4uDrt27cLmzZthMBiQmJiIlJQUAEBxcTHy8vKg1+sRHR0NnU7n9hchRWq6IzA0I8bWBVNnWz1ERHIgiKK8xp+e6MmPt8yvo2vTBCkF/Os/JDtVo1zIvUa51wewRleQe32AfGqcdE/eF1jmrA9fLVJqkTBn1qZ5OXXR5AolInIxvwh5YCjoHblByZG1abhsMBHJlc+H/Oj13u1d5tfei7Xcso+I5MxnQ368zTz09wdR8nkjAEwY9FIXa5UBAl5ZtYijdyKSNZ9chdKyFd94uzUNmkTJdow2MQpByrFvj2Wa5Xs5yQx4IpI9nxvJ19S34VBFg82VI4eTasdYAvxY9Q109RgQGqKCNjGKwU5EXsWnQt4ygrdnBmZoiEryGEcv1hIRyY3Xh7yzG2lrE6PcVBERkXx4dchPZuExjtCJyB94dcg7uvAY++pE5G+8OuTtmcsepFTg5dSFDHYi8ktePYVS6uJpaIiKAU9Efs2rR/LaxCibPXneqERENMSrQ96ZhceIiPyJV4c88GAuu1yW/SQikhOv7skTEdHEGPJERD6MIU9E5MMY8kREPkx2F14VCsEj504V1jh5cq8PYI2uIPf6AHnUKFWD7DbyJiIi12G7hojIhzHkiYh8GEOeiMiHMeSJiHwYQ56IyIcx5ImIfBhDnojIhzHkiYh8GEOeiMiH+UTInzx5EqtWrcLzzz+PI0eOeLocAMD+/fuxevVqrF69Grt37wYAXLp0CWlpaXj++eexd+9eD1f4wDvvvIM333wTgPxqPHPmDLRaLVJTU1FYWAhAXjWWl5dbf8/vvPOOrOrT6/VYs2YN/vznP09YV2NjI7RaLVauXInc3FwMDg56pL5PPvkEa9asQVpaGt566y0MDAx4tD5bNVocPnwYGRkZ1seerFGS6OXa2trE5ORk8fvvvxf7+vrEtLQ08fr16x6t6eLFi+Lf/u3figaDQRwYGBB1Op148uRJMTExUfzuu+9Eo9EoZmZmiufOnfNonaIoipcuXRKXLVsmvvHGG+L9+/dlVeN3330nPvvss2Jra6s4MDAgbty4UTx37pxsarx375749NNPi11dXaLRaBQ3bNggfvHFF7Ko78qVK+KaNWvE6Oho8fbt2xP+blevXi1+9dVXoiiK4ltvvSUeOXJkyuu7efOm+Nxzz4m9vb2i2WwWf/3rX4slJSUeq89WjRbXr18Xf/azn4kvvfSS9TlP1WgPrx/JX7p0CX/913+NWbNmYcaMGVi5ciUqKys9WpNarcabb76JoKAgBAYGIioqCrdu3UJkZCTmz58PpVKJtLQ0j9f5ww8/YO/evdi0aRMA4Nq1a7Kq8fTp01i1ahXCw8MRGBiIvXv3Yvr06bKp0WQywWw24/79+xgcHMTg4CCCg4NlUV9ZWRl27NiBsLAwAOP/bltaWtDf34/Y2FgAgFarnZJ6R9cXFBSEHTt2IDg4GIIgYMGCBbhz547H6rNVIwAMDAwgPz8fW7ZssT7nyRrtIbtVKB119+5dqNVq6+OwsDBcu3bNgxUBjz/+uPV/37p1C6dOncJLL700ps729nZPlGeVn5+Pbdu2obW1FYDt99KTNTY3NyMwMBCbNm1Ca2srkpKS8Pjjj8umxuDgYGzduhWpqamYPn06nn76adm8h//0T/804vF4dY1+Xq1WT0m9o+uLiIhAREQEAKC7uxtHjhxBUVGRx+qzVSMA/OY3v8H69esxb94863OerNEeXj+SN5vNEIQHS22KojjisSddv34dmZmZ+PWvf4358+fLqs5PP/0UP/7xj6HRaKzPye29NJlMqKmpwT//8z/jk08+wbVr13D79m3Z1NjU1IR/+7d/w9mzZ3H+/HkoFArcunVLNvUNN97vVm6/8/b2drz88stYv349li1bJqv6Ll68iNbWVqxfv37E83Kq0RavH8mHh4ejtrbW+rijo2PEn1eeUldXhy1btuDtt9/G6tWr8V//9V/o6Oiwft3TdX7++efo6OjACy+8gP/93//FvXv30NLSgoCAANnUOGfOHGg0GsyePRsAsGLFClRWVsqmxgsXLkCj0SA0NBTA0J/phw4dkk19w4WHh9v89zf6+c7OTo/Ve+PGDWRlZSEjIwOZmZkAxtbtyfoqKipw/fp1vPDCC7h37x46OzuRnZ2NnJwc2dRoi9eP5J955hnU1NSgu7sb9+/fx3/8x38gISHBozW1trbi7//+71FcXIzVq1cDAGJiYvDtt9+iubkZJpMJFRUVHq2zpKQEFRUVKC8vx5YtW7B8+XK8//77sqoxOTkZFy5cQE9PD0wmE86fP4+UlBTZ1Lhw4UJcunQJ9+7dgyiKOHPmjOx+zxbj1RUREQGVSoW6ujoAQ7OFPFGvXq/Hq6++iq1bt1oDHoBs6gOAoqIinDp1CuXl5SgsLMTixYvx7rvvyqpGW7x+JP+jH/0I27Ztg06ng9FoxIYNG/BXf/VXHq3p0KFDMBgM2LVrl/W5n//859i1axc2b94Mg8GAxMREpKSkeLDKsVQqlaxqjImJQVZWFtLT02E0GhEfH4+NGzfiJz/5iSxqfPbZZ9HQ0ACtVovAwED89Kc/xebNmxEfHy+L+oab6HdbXFyMvLw86PV6REdHQ6fTTXl9n332GTo7O1FSUoKSkhIAwPLly7F161ZZ1CdFzjVyZygiIh/m9e0aIiIaH0OeiMiHMeSJiHwYQ56IyIcx5ImIfBhDnojIhzHkiYh8GEOeiMiH/X8YAcLtsf+0GgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1666,7 +462,7 @@ }, { "cell_type": "code", - "execution_count": 70, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -1703,7 +499,7 @@ " \n", " 1\n", " 0.2\n", - " 488.000000\n", + " 488.100000\n", " \n", " \n", " 2\n", @@ -1712,13 +508,13 @@ " \n", " \n", " 3\n", - " 3.6\n", - " 491.400000\n", + " 3.0\n", + " 491.000000\n", " \n", " \n", " 4\n", - " 4.0\n", - " 492.000000\n", + " 3.6\n", + " 491.400000\n", " \n", " \n", " ...\n", @@ -1726,53 +522,53 @@ " ...\n", " \n", " \n", - " 424\n", + " 417\n", + " 148.8\n", + " 636.600000\n", + " \n", + " \n", + " 418\n", + " 149.0\n", + " 636.800000\n", + " \n", + " \n", + " 419\n", " 149.2\n", " 637.200000\n", " \n", " \n", - " 425\n", + " 420\n", " 149.4\n", " 637.266667\n", " \n", " \n", - " 426\n", + " 421\n", " 149.6\n", - " 637.300000\n", - " \n", - " \n", - " 427\n", - " 149.8\n", - " 633.500000\n", - " \n", - " \n", - " 428\n", - " 150.0\n", - " 633.500000\n", + " 637.333333\n", " \n", " \n", "\n", - "

429 rows × 2 columns

\n", + "

422 rows × 2 columns

\n", "" ], "text/plain": [ " TARGET_S SOURCE_S\n", "0 0.0 487.800000\n", - "1 0.2 488.000000\n", + "1 0.2 488.100000\n", "2 1.8 489.800000\n", - "3 3.6 491.400000\n", - "4 4.0 492.000000\n", + "3 3.0 491.000000\n", + "4 3.6 491.400000\n", ".. ... ...\n", - "424 149.2 637.200000\n", - "425 149.4 637.266667\n", - "426 149.6 637.300000\n", - "427 149.8 633.500000\n", - "428 150.0 633.500000\n", + "417 148.8 636.600000\n", + "418 149.0 636.800000\n", + "419 149.2 637.200000\n", + "420 149.4 637.266667\n", + "421 149.6 637.333333\n", "\n", - "[429 rows x 2 columns]" + "[422 rows x 2 columns]" ] }, - "execution_count": 70, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -1787,7 +583,7 @@ }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -1802,7 +598,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEWCAYAAABliCz2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA6U0lEQVR4nO3deXxTVf7/8VfSdN+gJV1sWcq+l7JawWIFh0VBBqpfKWN1BAR3eHxlVH7MV3H8DYzy05n5Ko6O69Td0SIgFlCggOBg2WVtaSmFQpe0NG3TpFnu749CACmkhYakyef5jza5Nz1vbvPp6cm556gURVEQQgjh8dSuboAQQogbQwq+EEJ4CSn4QgjhJaTgCyGEl5CCL4QQXkIKvhBCeAmNqxvwa1VVddhsLZ8pGhkZgk5X64QWuS/J7DlCH/49ADVvv3/Zc56a+Wokc/Op1Sratw9u1rFuV/BtNuWaCv75c72NZPYQZ84AV87mkZkdkMytT4Z0hBDCSzSr4G/YsIGpU6cyfvx4XnrppUue+/jjj7n//vvtX5eUlDBjxgzGjx/PI488Ql1dXeu2WAghxDVxWPCLi4t5/vnnWb58OatWreLgwYPk5OQAkJ+fz1tvvXXJ8YsXLyY9PZ3s7Gz69+/P8uXLndNyIYQQLeKw4K9fv56JEycSExODr68vr732GomJiTQ0NPA///M/PPXUU/ZjzWYzP//8M+PGjQNg6tSpZGdnO6/1Qgghms3hh7ZFRUX4+voyc+ZMysvLSU1NZd68eSxdupRp06YRHx9vP7aqqoqQkBA0msaX1Wq1lJaWtqhBkZEhLYxwgVYbes3ntlWS2UP4+gBXzuaRmR2QzK3PYcG3Wq3k5uaSmZlJUFAQjz76KF9++SWnT5/mueee4z//+Y/92KYW3lSpVC1qkE5Xe02fVGu1oZSX17T4vLZMMnuOcLMVgOomsnlq5quRzM2nVqua3VF2WPA7dOhAcnIyERERAIwZM4bdu3eTl5fH3XffjcFgoKKignnz5vHKK69QW1uL1WrFx8eH8vJyoqKiWhxACCG8gb6ugdwjZXS7KfyG/EXjcAw/NTWVrVu3otfrsVqtbNmyhcGDB/Pdd9/xzTff8NJLL9G/f3/++te/4uvry9ChQ1mzZg0AK1asICUlxekhhBCirSk/W8+Sj3fx0bqjfLEx/4Z8T4c9/MTERGbNmkV6ejpms5mRI0cybdq0Kx7//PPP8+yzz/Lmm28SGxvLq6++2qoNFkKItmzL3hJ+2HWSE6W1BPlr0Pio0Rsabsj3btadtmlpaaSlpTX53IgRIxgxYoT967i4ODIzM1undUII4SEMRgs7DpWSue4Ivj5qOoQHMHtSX37cf5q9+bob0ga3W1pBCCE8zZlKA3/79z5KKw34+/nwl7nJhAX5AbDvmI7aenOTk15amyytIIQQLWSx2pi5dANb9pU4PHb7gTO88P4Oag0NpA6O49n0wfZiDxAa6IvVpnCyzPmLxUkPXwghWqi23owCfLnxGLcOvKnJY6prTby18gCHT5yl201hzJncjw7tAi87Li4qBJUK8k+epX+ndk5ttxR8IYRoIWND430TKhXoDQ3U1ZuJjWxcothitbHyx+Pk7DlFjcHMqAGx3Ht7d0ICfZt8rX5dInjr6duIjQl3+r0HUvCFEKKF6k0W+/8v+3Q3J8vrGDsknonJnXnj6/0cK9HTq2M77knrTtebwhy+nsbnxoyuS8EXQogWMlxU8E+WN64I/P3Ok3y/8yQqFcy9ux/D+0S7qnlXJAVfCCFaqN54oeCHBfuhr2ucR5/cL4ZxwzvSKdo91wGSgi+EEC1Uc+5GqRqDGYAO4QE8PLkf3ePCXdksh2RaphBCtEC9yULmuqP2r1VA+tiebl/sQXr4QgjRbFU1Jt5bcwgVMHlUAondI+kS4/hDWXchBV8IIRxQFIUt+07z+YZ8LFYb94/rxW1Jca5uVotJwRdCiKuo1Bv519oj7Dumo1fHdjw4sTfR7YNc3axrIgVfCCGuYN8xHa9/vQ9QMeOOnqQOjkPdwk2d3IkUfCGE+JXTujrW554kZ88p4rUhzL27n/1O2rZMCr4QQpyjKAobdp3i0+/zALh9cDxTbk0gOKDpZRHaGin4QggBnCqv5aucAvbkV5DYLZL0O3qibWKxs7ZMCr4QwqspisLaHcWs2FKA1aZwZ3JnfntrV9TqtjtWfyXNKvgbNmzg9ddfx2AwMGrUKBYtWsTnn39OZmYmKpWK/v37s3jxYvz8/Dh06BCLFi2itraWoUOHsnjxYjQa+b0ihHA/J0prWLGlkD35FfTp3J7Zk/rSLsTf1c1yGod32hYXF/P888+zfPlyVq1axcGDB/nwww959913+eyzz1i5ciU2m41PPvkEgAULFvDHP/6RtWvXoigKX3zxhdNDCCFES9SbLPxr7REWv/8zR4rP8ttbE3j6vkEeXeyhGT389evXM3HiRGJiYgB47bXXsFgs9OjRg5CQEAB69uxJSUkJp06dwmg0MmjQIACmTp3K3//+d9LT052XQAghWuBkWS3/WHmA07o6bh8Sz29v7UpQgHeMQjhMWVRUhK+vLzNnzqS8vJzU1FTmzZtHXFzjXWaVlZV8/PHHLFmyhLKyMrRarf1crVZLaWlpixoUGRnSwggXaLXuuUKdM0lmD+HrA1w5m0dmdsAZmU+c0fPphnxKKupY8LshpCTFt/r3uB7Ovs4OC77VaiU3N5fMzEyCgoJ49NFHycrKYurUqZSWljJr1iymTZvGiBEj2LVr12Xnq1p4k4JOV4vN1vLNfLXaUKfvFuNuJLPnCDc37qBU3UQ2T818Na2Z+UBhJd/9p4iDx6vsj903pgd94p2/w1RLXGtmtVrV7I6yw4LfoUMHkpOTiYiIAGDMmDHs27ePxMREZs+eze9+9zseeughAKKjo6moqLCfW15eTlRUVIsDCCFEa6iqMfH/Pt9zyWPjh3fitkFN70Pr6RwW/NTUVJ555hn0ej3BwcFs2bKF5ORkZs6cyfz587n77rvtx8bFxeHv78/OnTsZMmQIK1asICUlxakBhBDiSvYda+yAPjKlP4O6d0Djo2rxqIMncVjwExMTmTVrFunp6ZjNZkaOHInVaqWiooL33nuP9957D4Dbb7+dp556imXLlrFo0SLq6uro27cvGRkZTg8hhPBeVpsNH3XTEw7PVBrw1agZ0kvbptfAaS3N+mg6LS2NtLS0Sx47P4zza7179+bf//739bdMCCEcqDOamf+/P3JL/xgGde9AcVkNfRMi0FUbgcbFz6LbB0qxP8c75iIJITzSq5/vwWK1sXlvCZv3lgCQtaXwkmOm3Jrgiqa5JSn4Qog2q/B046yWySO7sDuvguKyWgD+z/1DCPTX4KtRe9x6ONdDCr4Qos15e9UBdh0pB2DSLV2YcmtXxg7tyJN/2wJAtzawv6wrSMEXQrQpNpvCTwcu3NAZHNi4dLG33C17PRyupSOEEO6kuq7hkq+D/BsLvXww65j8ShRCuJ39xyo4ceosapWKoAANgf4aKvVGTGYre/Ia59YHB2ioM1ouOzck0DM2K3EGKfhCCLdSfraehf/YftVjVECfLhHkHi7D56J16//6xCg0PjJwcSVS8IUQbmX7gTMA3Dowlpv7xaBWgcFkIcDXh4jwADRqNT4+KgL9NHSODmFYnwvLt4QF+7mq2W2CFHwhhNtQFIVtv5xhYPcO/H5iH4fH35ncxfmN8iDyt48Qwm0cO6WnrKqe1CEdXd0UjyQ9fCGEy9WbLHz2Qx578yvw81Vzy8BY6mqMrm6Wx5GCL4RwqdO6Ol7/ej+llfUM7a3l5n4xBAX4SsF3Ain4QgiXUBSFnw6W8tG6I/io1fz3fYPo07m9q5vl0aTgCyFuuOq6BjLXHmHX0XK63RTGnLv70SFc1rxxNin4QogbasehUj5adxRjg5V7Ursxblgn1Gq5S/ZGkIIvhLhhdhwq5R/fHCAhNpSH7uxLXIdgVzfJq0jBF0I41fm59SfLazlUVEV0+0AW3j/kirtUCedpVsHfsGEDr7/+OgaDgVGjRrFo0SK2bdvGkiVLMJlMTJgwgfnz5wNw6NAhFi1aRG1tLUOHDmXx4sVoNPJ7RQhvdKykmg+/O8zJ8jr7Y/ekdpNi7yIO/9WLi4t5/vnnWb58OatWreLgwYPk5OSwcOFCli9fzpo1a/jll1/IyckBYMGCBfzxj39k7dq1KIrCF1984fQQQgj3YlMU1u04wV8+3kW9ycrvJ/Tmr0+OYs7kfoyVm6pcxmHBX79+PRMnTiQmJgZfX19ee+01AgMD6dy5Mx07dkSj0TBp0iSys7M5deoURqORQYMGATB16lSys7OdnUEI4Uaqaky89vkePtuQT/+ESP744FBuTbyJsCA/RvSNxlcjvXtXcTjWUlRUhK+vLzNnzqS8vJzU1FR69OiBVqu1HxMVFUVpaSllZWWXPK7VaiktLW3qZYUQHmjX0XI++O4wDWYrGeN6MXrQTahknXq34bDgW61WcnNzyczMJCgoiEcffZTAwMvny6pUKhRFafLxloiMDGnR8RfTakOv+dy2SjJ7CF8f4MrZ3D3z4aJKPs4+zJ6j5XSLD+e/04fQMfr62uzumZ3B2ZkdFvwOHTqQnJxMREQEAGPGjCE7OxsfHx/7MWVlZURFRREdHU1FRYX98fLycqKioi57zavR6Wqx2S7/xeGIVhtKeXlNi89ryySz5wg3WwGobiKbO2dWFIVNu0/x8fo8QgI13JPajTuGdkSj5rra7M6ZneVaM6vVqmZ3lB0OpqWmprJ161b0ej1Wq5UtW7Ywfvx4CgsLKSoqwmq1snr1alJSUoiLi8Pf35+dO3cCsGLFClJSUlocQAjh3hRFIWfPKf7w5nYy1x2lf9cIlsxJZsKIzrIBiRtz2MNPTExk1qxZpKenYzabGTlyJNOnT6dr16488cQTmEwmRo8ezfjx4wFYtmwZixYtoq6ujr59+5KRkeH0EEKIG0dvaODD7w6zO6+CLjGhTBrZhZEDYmSqZRugUpoaeHchGdJpPsnsOcKnTASgesWay55zp8z7jun4MPswNYYGpo3uxh3DOjpl83B3ynyj3IghHbkjSgjhkMFoZt3PxazadpyYiCCenDaUzjHe96FqWycFXwhxRYqi8OP+M7y35hAAQ3tpmXlnX/z9fBycKdyRFHwhRJMq9UY+yD7MLwWVAPRLiODR3w5wcavE9ZCCL4S4hKIo5Owt4YsN+dgUhfSxPfDz9aFflwhXN01cJyn4Qgi78rP1fPDdYQ4VVdG7UzsenNiHqHayMYmnkIIvhMCmKGzcdYp/bzqGSgUZ43qRMugmp8zAEa4jBV8IL1daZeD9NYc5WnyWfgkRPDi+N5HhAa5ulnACKfhCeCmbTeH73GK+3lyAj4+a30/ozaiBsbLYmQeTgi+EFzqtq+O9NYc4dkrPwG6RPDC+N+1D/V3dLOFkUvCF8CJWm421O4pZsaUQf181s+/qy839oqVX7yWk4AvhJU6W1/Let4c4fqaGwT213P+bnoSHSK/em0jBF8LDWaw21vxUxKofjxPor2Hu3f0Y1jtKevVeSAq+EB7sVEUd/1x5gBNltQzvE0X6HT0JC/JzdbOEi0jBF8ID1ZssZG0uYMv+0/hr1Dz22wEM6aV1fKLwaFLwhfAwhaf1vLP6IKWV9QztreXe1O5EhMm8eiEFXwiPYbHaWPljIWu2nyA8xI//vm8QfTq3d3WzhBuRgi+EBzhRWsO73x6iuKyWkf1jmD62B0EBvq5ulnAzUvCFaMMUReHb7UV8s7WQ4EBfnpg2gKQeMlYvmtasgp+RkYFOp0OjaTz8xRdf5Pjx47z99tsApKSk8MwzzwBw6NAhFi1aRG1tLUOHDmXx4sX284QQ109RFOqMFowNFv7w5nYAhvWO4v5xvQgJlF69uDKHlVhRFAoKCti0aZO9cNfX1zN79myys7MJCwtj+vTpbNu2jVtuuYUFCxbw0ksvMWjQIBYuXMgXX3xBenq604MI4Q0UReG9bw/x4y9n7I9p2wUwZ3I/1GqZVy+uzuE28wUFBahUKmbPns3kyZP56KOPsFqt2Gw26uvrsVgsWCwW/P39OXXqFEajkUGDBgEwdepUsrOznZ1BCK/x703H7MU+qn0gj/22P0vnJEuxF83isIev1+tJTk7mhRdewGg0kpGRQUJCAk899RQTJkwgICCA4cOHM3jwYPbs2YNWe2H8UKvVUlpa2qIGNXf39aZotd63qbJk9hC+jXvEXilbWU0Db2ftp6Ckmom3dGHu1IEef6esR15nB5yd2WHBT0pKIikpCYCgoCDS0tL45JNPOHXqFBs3biQ0NJSnn36ad999l8GDB192fkt/KHW6Wmw2pUXnQOM/VHl5TYvPa8sks+cIN1sBqP5VNmODhdU/nWDNtuMA3DowlqmjEqioqL3RTbyhPPU6X821ZlarVc3uKDss+Lm5uZjNZpKTk4HGMcTvv/+ehx56iMjISKBx6OaTTz5hwoQJVFRU2M8tLy8nKiqqxQGEEJB/spp3Vh+kvLqe2wfHMaBrJAO6RsrwjbhmDsfwa2pqePnllzGZTNTW1pKVlcUTTzzBtm3bMBgMKIrChg0bGDBgAHFxcfj7+7Nz504AVqxYQUpKitNDCOFJLFYbu46W88pnu7EpCv/3kZH87je9SOzeQYq9uC4Oe/ipqans3buXKVOmYLPZSE9P54EHHsDPz4+pU6fi6+vLgAEDePjhhwFYtmwZixYtoq6ujr59+5KRkeH0EEJ4iqPFZ3l/zSFKq+oJDtDw7IzB9OrWweuGN4RzqBRFafmAuRPJGH7zSWbPET5lIharjfRbnyHQX8O9qd3p26U9EWEBHpv5aiRz87XqGL4Qwnkq9UbW5xbze4sVi1XBalOYdVcfBnbr4OqmCQ/kcAxfCOE8O4+Us3ZHMWdrGrCe+8s2VNarF04iPXwhXKC23kzW5gLMFhsANkWxD2UGB8jbUjiH/GQJcQM1mK28tfIAu/MqLnlcAXsPX1a5FM4iBV+IG0RXbWTpx7vQ6Y2XP6koWG02VECQv7wthXPIGL4QN8jxMzXo9EZu6R9z2bCNAthsCoH+GplrL5xGCr4QTnSitIZ1PxcD0GBpXD5h0i1dLltyRFEah3SCZPxeOJH8dAnhJFmbC1h1bg2crrFhmM6tl+N3bqG0iymKgk2BYBm/F04kPXwhnMBitfH9zmL714eKKmkwN87I8fO9/G2nKI1DOtLDF84kBV8IJyg8rafeZLV/XVxWS8P5Hr6m6R6+1abIlEzhVFLwhbhGVpuNN1f8wsHjlXyfW8znG/Lszx0orLzk2OKyWhosVlQq0Phc/qGszT6GL0M6wnmkOyHERRrMVk7rDHSOcbwRxcmyOn4+XMbPh8vsj40b3ol2If4cOH5pwS+rqqfGYMbP16fJPSKMDRZUqKSHL5xKevhCXGTT7lMs/uBntl+0Z2xTjhafZcWWAgDitSHcOjAWgMISPQajmYISPf5+F4ZuFGh8THPlt5yCjOEL55KfLiEuUl3XAMAXm/JJ7h8DQL3JgqJAUICG2nozr36+h+NnavD382Hs0Himj+lBpd7Eln2nqak3c6ioCkWBpO4d+OlgKUH+GgwmC8VlF3aputJGcDJLRziT9PBFm1VWZeCng1fvif/aaV2dvfduMFr4enMBFqvN/nx9w7mtBmsbqK41oSgKC5Zv4w9vbqNSb2TDzpMcP9O4hO1fHx9F+tieqFQqQoMaC3WNoYEDx6sI8PNhQNfGHeHOP9cc0sMXziQ/XaLNWvxBLvUmC8P7RKNu5t7J/+ef/wEguX8MO4+WsXrbcXp3akd8VAihgb7UGBrsx/475xjTx/TAYLIA8PTybfbnnp0x+JIhGz9fH/x9fagxmDlQqKN3p/Zo2wUCjQulnRcbGXTV9kkPXziTFHzRZtWfK8RGk6VZs1tMDRemSdpsCsWljUMsyz7bc8lxHcIDqKg28uP+M/RLiGjytc4X84uFBvlyrKSa8rNGfjOsExFh/gDUGS1Ehvmj05v4nweHNfl6Pmo1VptNevjCqZr105WRkYFOp0OjaTz8xRdfRKfT8frrr2MwGBg1ahSLFi0CYNu2bSxZsgSTycSECROYP3++81ovBI0F1VHBP1VRR8XZevvXJrP1kjH1i8VrQ6ioblzg7O2VB5s8xr+Jm6dCg/w4dkoPQL+ECNqFNBb8sGA/np0xhMLTevzP3WX7679HNBoV1gbwu8qHukJcL4cFX1EUCgoK2LRpk73gFxcX8/jjj/Pll18SGRnJAw88QE5ODiNGjGDhwoVkZmYSGxvLnDlzyMnJYfTo0U4PIrxXndGMlkB+KdDx7fYiFkxPumQBsl1Hy3n96/2EBF74pdDwq4KfMb4Xe/Iq2HdMx/A+UezJv3T54mfSk/jLJ7vtXze1PILvRfPro9sHolKpeGLaAOK0IUSGBxAZHmB//tebeMZ1CKGqxohvZHCL8wvRXA4LfkFBASqVitmzZ6PT6bj33ntpaGhg4sSJxMQ0zmJ47bXX8Pf3Z9++fXTu3JmOHTsCMGnSJLKzs6Xgiyv6ZP1R+neNZGC3yGt+jbr6xqGdf3xzAIPJgsFkuaS4rz63ns3FY+mndQb72DzATZHB3DYojtJKA9ERQdQYzJRX1zN+eCfUatVlK1j6NLGi5fn17B+e1Nc+1z6ph7ZZGXw1aqLaB1EtK2UKJ3JY8PV6PcnJybzwwgsYjUYyMjKwWq2MHDmSmTNnUl5eTmpqKvPmzaOsrAyt9sIPeFRUFKWlpS1qUHM3422KVuv4ZhlP05Yz22wKG3adpN5iY8zNXZp93q8z+/hp0GpD8fVVgwlCQgPRtr8wxl5/0dj9eafPXromfXxsOFptqP210yf2veT5i2fyAERFhV3esHPFukvH9g6vi4/60qGb838xXOm8tnydr5Vkbn0OC35SUhJJSUkABAUFkZaWxpEjR9i+fTuZmZkEBQXx6KOPkpWVha/v5eOoTd1VeDU6Xa19q7eWkF3u2x6D0YJNgWPFZ5udo6nMp8tqKC+vsc/UOXX6LFgu9N5rL5p5c97eo2WouDC0YqpvaNG/ZVPHni/hDc14rfn3JrJp9yk27j7VeM65dXaqmzivrV/nayGZm0+tVjW7o+zwE6Lc3Fy2b99u/1pRFNq1a0dycjIREREEBAQwZswY9u3bR3R0NBUVF8Y+y8rKiIqKanEA4R0MpsYhltIqg33p4Oa6uFNQd26o5vwwi/GiHr3JbKXOaOHXjp2qvuSvgObsMvVMetJVn599V1/uTO5MfJTjN1/HqBBm/Kanw+OEaE0OC35NTQ0vv/wyJpOJ2tpasrKySE1NZevWrej1eqxWK1u2bKFfv34kJiZSWFhIUVERVquV1atXk5KSciNyiDbIcK4QKwqUVNQ1+7y3Vx1g19Hyy17nfMGvb7hQ4Jd+tOuSc8/fBFVntNAxKoTfT+jNPbd1u2RO/ZX06tT+qs93aBfItNHdmn1PQHOPE6K1OOzWpKamsnfvXqZMmYLNZiM9PZ3hw4cza9Ys0tPTMZvNjBw5kmnTpqFWq1m6dClPPPEEJpOJ0aNHM378+BuRQ7RBF/e8i8tqSYhtYlz8IqVVBg6f1PPTgVJ+OnDhs6Fa47kevk9j/8V40bLERaWNfyKfX96gQ3gANYbG41MSb7LfDSuEN2jWPPx58+Yxb968Sx5LS0sjLS3tsmOTk5NZuXJlqzROeDbDRQX/5BXmxF/subd+uurraC7q4ReU6C/ZLNymNA4BdYkJw8dHzR1DO15TsX9p1ojLPsAVoq2Q2/qEyxjO9czDQ/yueBNUc5wfw9ecu2lJX9fA+2tyAQgL8kVvMDNpZBe+3HiMyPAA7h/X65q/100dZJ68aLvktj7hMueHdHp1bMfJ8loUpeWzsxpfp7Hgn79L9eKbpvQGM7f0j6FnfDsAQgNlrRrhvaTgC5cxmMyogB7x7agzWqiqMbX4NcKCfO2/OBosjUMt55c3OK+qxkS8NoQhvbT06Xz1D16F8GRS8IXLGIwWggI0dDw3jfFahnXahfjbe/hmi+2S1SjjtY3DL11iQ/H38+Gx3w6gQxOLngnhLWQMX7jM+YIfr20s+CfLa0ns3qFFrxEUoKHBbMNssVFvspAQG0aH8Mai/lTaQGrqzbJtoBDnyDtBuMz5VS6DAjR0CA+4ag//yImqJh8/vyTB+2sOUVFtpG+XCB6Z0t/+fHiwX+s2Wog2TIZ0hMsYTGb7Ha7x2pCrFvzPfshv8vHe526G2nGojDFD4vntrQmt31AhPIT08IXLGIwW2ndoXDO+Y1QIe49VYLZY8dVcftdrUzelpo/twS39Y9DXNTByQAxx2mtfeE8IbyAFX7jMxRuXdIwKQVEaNyrpEnP5HbdNLcLn5+tDUIAv997e3eltdZYHJ/RuHHZq+p4yIVqVDOkIl1AUBYPxwgeqjmbqXFzv77qlM+HBfsR5wE1QKYk3tfiDaiGulfTwhUuYLTYsVsW+h6u2XSB+vuomC76iKPbNRdqH+jM1pRtTU7rd0PYK4Qmk4AuXOH+z1PkhHbVaRVyHkMvW1DlTaeDT7/MoOlODr0bNnx8decPbKoSnkIIvXOL8OjoXz5HvGBXCrqPl9iUWvtlayKptx/HT+HBvand+M6wj0VHetzGGEK1FCr5wifP7yQb9quBv3lvClxuPcbK8ll8KKxneJ4opt3YlJiLoSi8lhGgmKfjCJexDOv4XFjPrlxBBdPtA1v1cTHCghqkpXbkzuXOLt8kUQjRNCr5wiaaGdGIiglgyJxmrzYYKFWq1FHohWpMUfOESBuPlQzrn+ahltrAQziDvLOESVyv4QgjnaNa7LSMjA51Oh0bTePiLL75IYmIiAH/5y1+oqqpi6dKlABw6dIhFixZRW1vL0KFDWbx4sf08IQD0hgYOHq8kwM9HevNC3EAOK7GiKBQUFLBp06bLCvf27dvJysritttusz+2YMECXnrpJQYNGsTChQv54osvSE9Pb/WGi7ZHURT+c7CUT77Po95k4b4xPVzdJCG8isPuVUFBASqVitmzZzN58mQ++ugjAM6ePctrr73G3Llz7ceeOnUKo9HIoEGDAJg6dSrZ2dnOabloc7buP83bqw4S1T6QF34/jDFD4l3dJCG8isMevl6vJzk5mRdeeAGj0UhGRgYJCQl8/vnnzJ8/n9OnT9uPLSsrQ6vV2r/WarWUlpa2qEGRkde+4qFWG3rN57ZV7p5ZURR2HSnjx70l/LivhC6xYbw6/zZ8rmMGjrtnvibn1vW/UjaPzOyAZG59Dgt+UlISSUlJAAQFBZGWlsa8efOYOnUqycnJfP311/Zjm9qEuqVzqHW6Wmy2lm9mrdV63x2Y7pZZURQsVgXfc5uJl1UZ+OC7wxw+cZZAfx8Su3dg4s2dqdS1fCvD89wtc2sJN1sBqG4im6dmvhrJ3HxqtarZHWWHBT83Nxez2UxycjLQ+Kbu378/P/74I3fffTfV1dUYDAb+/Oc/88ADD1BRUWE/t7y8nKioqBYHEG3T2h3FfLv9OE+mDaSi2siH2YfxUau4f1wvRg2Itf8iEEK4hsOCX1NTw9///nc+++wzzGYzWVlZLF682N7r//rrr9mxYwcLFy4EwN/fn507dzJkyBBWrFhBSkqKcxMIt1FwWk+d0cIrn+7GYlXo1bEdsyf1JSIswNVNE0LQjIKfmprK3r17mTJlCjabjfT0dHuxb8qyZctYtGgRdXV19O3bl4yMjFZtsHA/iqJwrERP7uEyut0Uhr+fD3EdQrgntRsaH+nVC+EuVEpTA+8uJGP4zecOmS1WG598n8em3acAmDCiE/ekOm8HKnfI7AzhUyYCUL1izWXPeWrmq5HMzdeqY/hCXEmd0cybK37h4PEqhvTSkpJ4E707tXN1s4QQVyAFX1yT0ioDf/tyH+Vn63loYh9GDYx1dZOEEA5IwRctoigK+wt0/HPVQQCevm8QvTq1d3GrhBDNIQVfNNuxU9V89kMex0r0xEYG8VTaQKLay8YkQrQVUvBFs5RU1PF/M3cC8NtbExg7tCOB/vLjI0RbIu9YcUUny2pZvf04DWYbvxRWAjBlVAKTRia4uGVCiGshBV80qbqugdez9nO21kRUuyAGdotk1MBY+idEuLppQohrJAVfXEJRFLYfOMOn3+dhMlt56p5E+nWRIi+EJ5CCL+xOlNbw5aZjHCispHtcOL+f2JvYyGBXN0sI0Uqk4AtsisIH3x1m677TBPlrmD62B2MGx8sm4kJ4GCn4Xq7eZOHT7/PYuv80YwbH89uUBIICfF3dLCGEE0jB92JHi8/yzuqD6KqN3JncmakpXVu8f4EQou2Qgu+FrDYb32wt5NttRUSGB/DMjMH07NjO1c0SQjiZFHwvYrbYyD95llXbjnP4xFlGDYhl+tgecgOVEF5C3ule4vgZPW+tPEhppQGNj4qZd/Zh5ABZ8EwIbyIF38NZbTa+3V7Eqh+P46NWERsZxKNT+hOnvfbN4oUQbZMUfA92/IyezLVHKTyt5+a+0cz4TU+CZQaOEF6rWQU/IyMDnU6HRtN4+IsvvsiWLVv47rvvABg9ejR/+MMfANi2bRtLlizBZDIxYcIE5s+f76SmiytRFIU1PxXxVU4BwQEa5t7dj+F9ol3dLCGEizks+IqiUFBQwKZNm+wFf9u2bWzdupWsrCxUKhWzZs1i/fr13HrrrSxcuJDMzExiY2OZM2cOOTk5jB492ulBRKPDRVV8uSmfwtM1JMSG8mRaIuHBfq5ulhDCDTgs+AUFBahUKmbPno1Op+Pee+9lxIgRPPvss/j5NRaSbt26UVJSwr59++jcuTMdO3YEYNKkSWRnZ0vBvwFq6818+n0e2w+cISLMn5l39iG5X4zcLSuEsHNY8PV6PcnJybzwwgsYjUYyMjJISEhg5MiRABw/fpw1a9bw2Wef8csvv6DVau3nRkVFUVpa2qIGNXcz3qZotaHXfG5bpdWG8p9fTvP6l3upMTTwX3f05J4xPfH39XF105zGI6/zuet1pWwemdkBydz6HBb8pKQkkpKSAAgKCiItLY2cnBxGjhxJXl4ec+bM4ZlnnqFLly7s37//svNbeuemTleLzaa06Bzwzl3uIyJD+OfXe/l2exGdokOYd89AOkWHoj9rcHXTnMZTr3O42QpAdRPZPDXz1Ujm5lOrVc3uKDss+Lm5uZjNZpKTk4HGMX2NRsPOnTt58sknWbhwIXfeeScA0dHRVFRU2M8tKysjKiqqxQHE1VmsNvbm61i1/WdOnKkhJfEmZtzRA1+N5/bqhRDXT+3ogJqaGl5++WVMJhO1tbVkZWVx++2389hjj7Fs2TJ7sQdITEyksLCQoqIirFYrq1evJiUlxakBvE3Z2XoWv/8zb2Ttp9ZgZuadfXhwQm8p9kIIhxz28FNTU9m7dy9TpkzBZrORnp5OdnY2JpOJpUuX2o+77777mD59OkuXLuWJJ57AZDIxevRoxo8f79QA3uTIiSreyPoFi9XG7YPjmD01kfpao6ubJYRoI1SKorR8wNyJZAz/cjWGBtb9XEz2f06gbRfIU2kDiY4I8ujMV+KpmcOnTASgesWay57z1MxXI5mbr1XH8IXrKIrC1v2n+WJDPnVGCwO7RfLwpL6yXr0Q4ppIwXdTJRV1/GvtEY4Wn6V7fDgzxvakc4z3TVMTQrQeKfhuxqYofLvtOCt/PE6Anw8PTujNqIGxqGVjEiHEdZKC70bKztbz+Q957M6rYHifKNLH9iRMlkUQQrQSKfhuwGZT+PemY2TvOIFapWL62B6MHRIv2w0KIVqVFHwXqzE08O63h9h3TMfIATFMvLkzsZHBrm6WEMIDScF3EYPRwqpthWzddxpjg5X7x/UiNSnO1c0SQngwKfgusCe/gsy1RzhbY6Jvl/bce3sPOkbJDlRCCOeSgn8D1dab+WT9UX46WEqcNpjHpw4gITbM1c0SQngJKfg3SEGJnjey9qOva+DuUQncmdwZjY/DpYyEEKLVSMF3Mr2hgT15FXy07gj+vj7MmdyPob1lBVEhxI0nBd+J9uRX8L9f7UNRoG+X9sy9uz8hgbIsghDCNaTgO0FJRR0frTvC4RNn0fioyRjXi+T+0fioZQhHCOE6UvBbkdVmY+2OYlZsKUStgpBAX55KG0i3uHBXN00IIaTgt5ZTFXW89+1BCk/XMKSnlt+N60W4LIsghHAjUvCvk82msHbHCbK2FBDgp2Hu3f0Y1jtKlkUQQrgdKfhNOFtrIu9kNcOaMZvmg+8Os3X/aTpFhzD/3kHSqxdCuC0p+BcxGC2s3XGCVduOA9D1kVuIDA+46jm788oZ2juKuZP7oVZLr14I4b6aVfAzMjLQ6XRoNI2Hv/jii5w4cYI333wTs9nMgw8+yIwZMwDYtm0bS5YswWQyMWHCBObPn++81rcSRVHYfuAMK388TllVvf3xwtP6qxZ8RVGoN1mJbh8oxV4I4fYcFnxFUSgoKGDTpk32gl9aWsr8+fP5+uuv8fPz47777mPEiBHEx8ezcOFCMjMziY2NZc6cOeTk5DB69GinB7lWNpvCN1sLWbXtOP5+PvxhehLd4sJ59NUcCs/or3qTVIPZhk1RCPKXP5SEEO7PYaUqKChApVIxe/ZsdDod9957L8HBwdx88820a9cOgHHjxpGdnc3w4cPp3LkzHTt2BGDSpElkZ2e7bcEvKNHz0bojHD9Tc9l+sfFRIRw/ffUNhQ0mCwABUvCFEG2Aw0ql1+tJTk7mhRdewGg0kpGRwYQJE9BqtfZjoqKi2LdvH2VlZZc9Xlpa2qIGNXf39aZotc3b8zWvuIqvNuazbV8J7UL8+e8ZQxidFHfJzJq+CZHk7D5JZGTIFYdrjLbG/0Z3CGn2925trvq+ruSRmX19gCtn88jMDkjm1uew4CclJZGUlARAUFAQaWlpLFmyhLlz515ynEqlQlGUy85v6fREna4Wm+3y13FEqw2lvPzqPXKAojM1vPzpLupNVkb0jSZjXC8C/TVUVNReclxMuwAMRgu/HC294oYkp85UA2BpMDfre7e25mb2JJ6aOdxsBaC6iWyemvlqJHPzqdWqZneUHRb83NxczGYzycnJQOOYflxcHBUVFfZjysrKiIqKIjo6usnH3YWu2siSj3cSHODLn2aOICLsyh/Inl+2+PjpmiYLvtli47Pv8wAI8JMhHSGE+3O4uEtNTQ0vv/wyJpOJ2tpasrKyeOWVV9i+fTuVlZXU19ezbt06UlJSSExMpLCwkKKiIqxWK6tXryYlJeVG5GiWwyeqaDDbmDO531WLPUBshyD8fNUUntZf8riiKOw8UsbSj3dxrERPuxA/4rWyJaEQwv057Jqmpqayd+9epkyZgs1mIz09nSFDhjB//nwyMjIwm82kpaUxcOBAAJYuXcoTTzyByWRi9OjRjB8/3ukhmqvgtJ4APx+6xzte28ZHraZLdCiFZy4U/Eq9kS825rPjUBkAGeN6kTLoJtRyV60Qog1o1ljEvHnzmDdv3iWPTZo0iUmTJl12bHJyMitXrmyVxrW2ghI9CbFhzS7QXWLD2Lj7FBarjTOVBpZ9tgejycLNfaOZPrYHoUFyV60Qou3wmsFns8XKybJaxg3v1OxzEmLDWPdzMX//ah8HCisJ8tfwxweGEqeV/WeFEG2P1xT8E6W1WG1Ki/aQTYhtnCL1S0EldwztyLjhHR2O/QshhLvymoJfcO7D1643Nb/ga9sF8pthHekeFy7bEgoh2jyvKPg2m8LGXadoF+JH+1D/Zp+nUqm4b0wPJ7ZMCCFuHI/fc6/OaObtVQc4U2mgd6f2rm6OEEK4jMf28G02hc17S/h6cwF19WYmj+zCXbd0cXWzhBDCZTyy4OefrCZz3RGKy2rp2bEd6WN70Cna+9blEEKIi3lUwbfZFL7dfpwVWwuJCPXnkSn9GdpLK9sNCiEEHlTwddX1LPtsN4dPnOXmvtHcf25RNCGEEI08oiLqqo28+OHPmMxWHprYh5EDYqRXL4QQv+IRBd/XV83opHiS+0ZdcSljIYTwdh4xLTMsyI85UwdKsRdCiKvwiIIvhBDCMSn4QgjhJaTgCyGEl5CCL4QQXkIKvhBCeAkp+EII4SWk4AshhJdwuxuv1Oprv0P2es5tqySzh4iJAa6czSMzOyCZW/8claIoSou/gxBCiDZHhnSEEMJLSMEXQggvIQVfCCG8hBR8IYTwElLwhRDCS0jBF0IILyEFXwghvIQUfCGE8BJS8IUQwktIwRdCCC/h9QXfG1eWkMyez9vygmRuDrdbPM2Ztm3bRl5eHmq1mjvvvJPw8HB8fHxQFAWVyjMXapLMnp/Z2/KCZL7WzF7Tw8/NzeXpp58mJCSEDRs28MYbb7Bq1SosFgsqlcojeweS2fMze1tekMzXk9lrVst8//33sVgszJ49m7q6Or766isKCgoYOnQoEydORK32vN99ktnzM3tbXpDM15PZ8/5lriA6OpodO3ZQXFxMcHAw99xzDwkJCezevRu9Xu/q5jmFZPb8zN6WFyTz9WT26IJ/7Ngx8vLyqKqqYtiwYSQkJLB9+3bKysoIDAwkLS2NgwcP8t1337m6qa0mPz+f/fv3o9PpuP3224mNjWX79u2Ul5d7bGZvu85yjT3/GoNzrrPHFvxNmzbx4IMP8t577zFjxgz27t1LVFQU+/fvZ9OmTZw4cYLg4GBuu+02jxnz27x5M4899hiffPIJd911F1arlVGjRvHzzz+zceNGioqKPC6zt11nucaef43BedfZ42bpKIpCbW0tX375Ja+++irDhg1j5cqVZGdnk5ycjI+PDwUFBaxatYqBAweyevVq3nvvPVc3+7qVlZXxxhtv8Kc//Ynhw4czf/58du/ezeDBgzEYDBw5csSjMnvjdZZr7PnXGJx7nT2u4KtUKkJDQwkPD6e4uJhhw4YxefJkgoODWbNmDXfddRfTpk0jNzeXyspKMjMz6dSpk6ubfd0iIiKIj48nNjaWM2fOkJ2djdlsJi8vj0ceeYQZM2aQn59PRUWFR2T2xuss19jzrzE4+TorHsRmsyk2m02xWCxKZmam8sorrygnTpywP5+VlaWMGTNG0el0Lmxl67LZbIqiKEp1dbWyYcMGRVEUJS8vT/nyyy8VRVGUtWvXKnfdddcl/w5tnbddZ7nGnn+NFeXGXGePGsNXqVSoVCpKS0u5++67OX78OF999RXFxcUATJkyhcTERM6ePevahrai8zdcVFdXk5qaCkD37t1JS0sD4De/+Q19+/alpqbGZW1sbd52neUae/41hhtznT2q4AMcPnyYN954g9DQUBYsWEB+fj6ff/45H3/8MStWrGD37t2EhIS4upmt6vDhw/zzn/+krq4OgIaGBvLz88nNzWXVqlXs37+fyMhIF7eydR09epQ333zTa67z0aNHeeeddzz+GlutVqxWK+A97+VfZ3bme7nN33iVk5PD+vXr0Wq1JCUlkZKSQm1trf0H4cyZM2zevJmDBw9iMBiYNWsWPXv2dHGrr4+jzPX19XzwwQccPXqU6upqnnvuOXr06OHiVl+fwsJCVq1axeOPP45araayshJ/f3+Cg4MBz7vOjvJ64jXOycnhm2++wWq1MmHCBMaPH+8V7+WrZW7163y9406ulJubq0ycOFHJyspSvvjiC2Xw4MHKp59+qiiKolgsFsVsNl9yfH19vSua2aqultlqtSpWq1VRFEVpaGhQFEVRampqXNbW1nB+XHPdunXKmDFjlHfeeeeS63px5vPa8nV2lPf884riOddYURRl27ZtyuTJk5UffvhB+e6775Tk5GRl7969iqJ43jU+72qZnXWd2/QsnYqKCkaNGsWUKVMA6Nq1K88++ywqlYr/+q//AmDLli3U1tYyYcIE/P39Xdja1tGczJs3b8ZgMDB+/Hh7j7CtKywspEOHDpSXl/Pmm2/y6KOP4uPjA4BarWbr1q3U1NR4zHW+Ul7l3EJZW7Zsoa6uzmOucX5+Pmlpadx+++1A49x7nU4HYF82wNPey1fLfH48v7Xfy216DD84OJiTJ0/ax7+GDBnC0qVLeeWVV9i4cSMANTU1DBgwAMAjVtFrTuba2lr69+8PtP3M59sfFRXF2LFjSU5OpqSkhOXLl2O1WlGr1RgMBo+5zs3N60nXGBrfp+c/kAUwGo0cOHDgsmM84Rqf15zMrX2d29wY/p49e6iuriYsLIykpCQee+wxbDYbb775pv2Yjz/+mKqqKh5//HGsVqu9J9hWeXNmf39/br75ZkpLSwkJCSE4OJiNGzfyww8/EBsby5w5c9BoNG0+s7flhcbMZ8+eJTIykgEDBnDo0CE6duxISEgIzz33HIMHD+aee+5hxYoVdO3alYEDB7q6ydfN1ZnbVA8/JyeHhQsXkpOTw7vvvsu8efN44403qKmpYe7cuZhMJgDq6uqoqKgAaPMr53l75k8++YRZs2YRHR1t/5N25MiR3HHHHeTn5/Puu+8CtOni52154ULmzZs389Zbb/Hwww/Tp08fQkJCsFgsVFVV0alTJ7Zs2cLbb79NYGCgq5t83dwhc5vq4T/77LOkpKQwceJELBYLc+fOxWKx8MEHH/DUU09hNpsJDw/n0KFDvPLKK21+1gJIZovFwuOPP86ZM2dYsWKF/ZiGhgZ27NhBz549iYqKcl1jW4G35QXHmf/0pz9x9OhR6uvrWbJkiVf8XN+IzG2qKxgWFobZbAZAo9Hwzjvv4Ofnx9NPP83f/vY3Zs+ezcSJE/nf//1fj/gBAcms0Wj4xz/+QVxcHA8//LD9GD8/P0aNGuURxc/b8sKVM8+aNQsAg8HA3r17WbZsmcf/XN/QzNc9z8fJLp6etG7dOmXo0KH2qUuKoigGg0GZO3fuJY+1dZK56cyPPfaYkpub64rmtTpvy6sozcv8yCOPKAcPHlR0Op1SVFTkima2KnfL7LY9fOVXI01Hjx7ljjvu4KmnnmLBggXs27cPgMDAQEJCQjxi4wPJfPXMgYGB1NfXu6KZrcbb8kLLMgcHB1NWVkZERESbXgjNXTO77Tx8g8Fg/9CquLiYDz/8kOeee47f/e53KIrCzJkzWbBgATU1NRw5coTOnTu7uMXXTzJ7fmZvywstz/zkk0+6uMXXz10zu+WHtps2bWLFihW0a9eOAQMGXHLTgc1mQ61Ws379eo4cOYJOpyM9Pb3Nj/NJZs/P7G15QTK7W2a3K/h5eXnMmjWLpUuXUlhYSHFxMSdPnuSZZ54hPj4ei8WCRuO2f5hcE8ns+Zm9LS9IZnfM7HZj+CaTiVtvvZXk5GTS09OZPn06CQkJvPLKK5SXl6PRaNiyZQtr167FarV6xJZmktnzM3tbXpDM7pjZbQr+iRMnOHr0KGFhYfz000/88MMPAHTq1Ilp06Zx0003sWnTJgD0ej39+vXDx8enTd9iLZk9P7O35QXJ7M6Z3eLvqXXr1vHqq6+i1WoZOHAgI0eO5PPPP6d9+/YMHjyYzp07ExMTw6FDhwC48847Xdzi6yeZPT+zt+UFyezumV3ewzcYDKxcuZJXX32VzMxM+vTpQ0NDA3v37uUf//gH69atAyA0NBS9Xo/JZGrzf/pJZs/P7G15QTK3hcwu7+GrVCoqKyspKSmhb9++TJw4kejoaHx9fQkODubPf/4z33//Pbt27WL58uUesSyqZPb8zN6WFyRzW8js8oIfGBhIWloamzdvJj4+nt69ezN48GCKi4s5ePAg7777LhqNhsDAQI+5rVwye35mb8sLkrktZHb5kA7AbbfdRlhYGKtXr+bw4cP4+PgwdepUjhw5gqIodO7c2S3+sVqTZPb8zN6WFySzu2d2i4IfERHBjBkzAPjXv/7FmjVrWLNmDWfPnqV9+/Yubp1zSGbPz+xteUEyu3tmt7rxqrKykh9//JHVq1cTFhbGQw89RJ8+fVzdLKeSzJ6f2dvygmR218xuVfDPa2hoQKVS4evr6+qm3DCS2fN5W16QzO7GLQu+EEKI1ucWY/hCCCGcTwq+EEJ4CSn4QgjhJaTgCyGEl5CCL4QQXkIKvhBCeAkp+EII4SX+PxcyS+KsltijAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEWCAYAAACKSkfIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA5NUlEQVR4nO3deVyVdd7H/9c5HEB2QQ6C4L6LCihWjEZqVmplDlJNlNyT40w2bXbfw69Fs1un322/cqaZpmxy2mbMJq1GMXPNvTILMjdQZBVQ2bdzgMNZrt8f6CkUZRE42+f5ePR4dA7XBd/3ueTNdb7nWlSKoigIIYRwCWpbD0AIIUTPkdIXQggXIqUvhBAuREpfCCFciJS+EEK4ECl9IYRwIRpbD+ByVVV6LJaOH0Xap48vFRW6bhiR/ZLMzsXvdw8DULfm/RbPO3Pmq5HM7adWqwgM9Gn38nZX+haL0qnSv7Suq5HMTuTCBaD1fE6b+Rokc/eQ6R0hhHAh7Sr9PXv2kJCQwKxZs3jppZdafO3DDz9k/vz51seZmZkkJCRwxx13sGTJEkwmU9eOWAghRKe1WfqFhYW8+OKLrF69ms2bN5ORkcH+/fsByM7OZs2aNS2WT0lJYdmyZezYsQNFUdiwYUP3jFwIIUSHtVn6u3btYvbs2YSGhuLu7s5rr71GVFQUTU1NLFu2jCeffNK6bHFxMY2NjURHRwOQkJDA9u3bu23wQgghOqbND3ILCgpwd3dn0aJFnD9/nqlTp7J48WJefvll5s2bR0REhHXZ0tJStFqt9bFWq6WkpKRDA+rTx7dDy/+cVuvX6XUdlWR2Iu5uQOv5nDbzNUjm7tFm6ZvNZtLS0li7di3e3t48+uijfPLJJ5w/f57nnnuOw4cPW5e1WCyoVCrrY0VRWjxuj4oKXac+wdZq/Sgrq+vweo5MMjuXAKMZgJrL8jlz5quRzO2nVqs6tLPcZukHBwcTFxdHUFAQADNmzODIkSOcOXOGe+65h/r6esrLy1m8eDEpKSmUlZVZ1y0vLyckJKTDIYQQwlUUlenILqph1pQhPfLz2pzTnzZtGl999RW1tbWYzWYOHjzIhAkT2LZtG6mpqbz00kuMHTuWv/zlL4SHh+Pp6Ul6ejoAqampxMfHd3sIIYRwNDU6Az9ml/PHf6axdsdpikp75mS0Nvf0o6KiWLhwIUlJSRiNRiZPnsy8efOuuvyqVatYunQpOp2OyMhIkpOTu3TAQgjhyIwmM5/szeHL9CIAIrS+PD5vHKMGBfXIlJbK3u6cJXP67SeZnUvA3NkA1Gza2uJ5Z858Nc6auVbfxJrPT5KRXwVAb18PVvzmRny93O1nTl8IIcT1URSFXd8XsvGrPAxNzR/Yz75pIIlTh/b4WOQyDEII0QnHcip4/LUDNDZd+6oDiqLw3heZfLwnm9BAbwB8emlsUvgge/pCCNEpn+3Pod5gorSqgQF9Wz++/tDJC2z+Op+SynqmTQjnV9OHs/1wAWOH9Onh0f5ESl8IIa6DRVEoqawnwNeDXh7NlVrfaGTN5xkcy6nAy1PD3JsHc/cvBqFSqbh78mCbjldKXwghrkNDo4kVH6QxOMyfF/4rlpziGt5KPUFlrYHJY0NJum0EXp72U7X2MxIhhHAgl457LK1uACDvfC1/Xv8jJ/Mr8fP24A+/imbMoCAbjrB1UvpCCHEdisv01v8/kVfJzBsHMPOGAfj7eNhwVFcnpS+EEB2kKApFZc1n0F46yerGMX1JvGUofQJ62XJobZLSF0KIDvo2o+XVg3v7epB8x0i7mru/GvsfoRBC2JHTZ6tYvycbgIdnj2L0wECCA7xsPKr2k9IXQoh2aDCY+HRfDnuPFBMc0IvlC26gf0jn7/9hK1L6QgjRhlMFVbz7RQaVtQZun9SfX948BE8PN1sPq1Ok9IUQ4ioURWHtziz2HSlG27sXz82fyLDwAFsP67pI6QshxGUsisKpgio2fZVHdlEN02LCSZw61CE+qG2L4ycQQogu1GAw8c6WDI6cKcff251fzxrFzePDOnzrV3slpS+EEDRP5Rw6eYFP9uVQpzcy75YhTJ8Q4RR79z/nXGmEEKITavRNfLQri+9PlTK0nz+P/XKcw8/dX027Sn/Pnj288cYbNDQ0MHnyZJYuXcr69etZu3YtKpWKsWPHsnz5cjw8PMjMzGTJkiXo9XpiY2NZvnw5Go38bRFC2B+LorD3h2K2HMqnTm/kninNV8NUq51jKqc1bd5EpbCwkBdffJHVq1ezefNmMjIy+Oc//8m7777Lxx9/zObNm7FYLHz00UcApKSksGzZMnbs2IGiKGzYsKHbQwghREedLanjz+t/ZN2uLEJ6e5HyQDT3TBns1IUP7djT37VrF7NnzyY0NBSA1157DZPJxLBhw/D1bT4xYcSIEZw7d47i4mIaGxuJjo4GICEhgddff52kpKTuSyCEEB2094ci61m18+8YydTofk7zQW1b2iz9goIC3N3dWbRoEefPn2fq1KksXryY8PBwACorK1m3bh0rV66ktLQUrVZrXVer1VJSUnK1b92qjtzg93Jabet3r3FmktmJuDef7NNaPqfNfA3dlbmotI61O7MI8PXgL09PJbi3/VxCoSe2c5ulbzabSUtLY+3atXh7e/Poo4+yceNGEhISKCkpYeHChcybN48bb7yR9PT0Fn8tFUXp8F/PigodFovS4SCdvZO8I5PMziXA2HzD7JrL8jlz5qvpyswms4Uv04pIO11KWXUDdfVGPDRqlj98A4rRZDevbWczq9WqDu0st1n6wcHBxMXFERTUfDOAGTNmcOzYMaKioli4cCHz589nwYIFAISGhlJWVmZdt7y8nJCQkI5mEEKILnPw2Hk27M22Pp44QsuEkVq7vd59d2uz9KdNm8YzzzxDbW0tPj4+HDx4kLi4OH7zm9+wePFi5s6da102PDwcT09P0tPTmThxIqmpqcTHx3fn+IUQ4prOFFUD8Ncnp+CmVuHdy922A7KxNkv/0h59UlISRqORyZMnYzabKS8v5/333+f9998HYPr06Tz11FOsWrWKpUuXotPpiIyMJDk5udtDCCFc27WmknOKa5g4Qouft2vu2V+uXQfQJyYmkpiY2OK5S1M6lxs1ahSffvrp9Y9MCCHaYXd6Eet2ZdHHvxfjhgTxwIzh5J6rpcFgpq6hibLqRqbFRNh6mHZDzpoSQjis8poG1u3KAqCitpF9P55j34/nWizj6eFG9PBgWwzPLknpCyEc1qmCagBuHh9GQvwQ3t58EpVKhb7ByJwpgwny9yTIvxf+MrVjJaUvhHBIyz/4noILzYc43j99ON69NPw/SRNsPCr71+ZlGIQQwt40GEzWwgfw8nTMu1jZgpS+EMLhVNY2tnjsKpdQ6AoyvSOEsDtNRjPFZTo0GjXl1Y00mcwE+nlSXt1c9odOXrDxCB2XlL4Qwu6s2XScHd8WXHMZjZsak9lC9DA5MqcjpPSFEHbFaLKwN70IgGERAYQH+1BUqiPnXC2/vXsM/bW+aDRqAn09UVBQIVM7HSGlL4SwK8dyymkymnn6vijGDekDQG19EydzK7lpTF+Zv79OUvpCCLvyzYkLBPp5MmZQoPU5f28P4saG2nBUzkNKXwhhF07kVrDnh2KO51YwJ34obmo5uLA7SOkLIWyqyWjmk3057E4vwsvTjQkjtCRMHYaxscnWQ3NKUvpCCJspuFDHms9Pcr6inhmxEdw7dSjuGjd6+3lSJqXfLaT0hRA9zmJR2PHdWf5zIBdfb3f++/4oxg7uY+thuQQpfSFEj6qoaeSdLRmcLqxm4ggt/zVrFL5ern1jk54kpS+E6DGHTl7gw52nsSjw8OxRTBkXJodg9jApfSFEt6usbeSz/TkcOlnCiIgAFtw1hpDeXrYelktqV+nv2bOHN954g4aGBiZPnszSpUv55ptvWLlyJQaDgVmzZvH0008DkJmZyZIlS9Dr9cTGxrJ8+XI0GvnbIoQrMpkt/OdALnvSi2gyWZgaE07SjOFo3ORwTFtp85UvLCzkxRdfZPXq1WzevJmMjAz279/P888/z+rVq9m6dSsnTpxg//79AKSkpLBs2TJ27NiBoihs2LCh20MIIexPbX0Tf/3kKNsPnyV2VAgrH7mJ5DtGSuHbWJuv/q5du5g9ezahoaG4u7vz2muv4eXlxcCBA+nfvz8ajYa7776b7du3U1xcTGNjI9HR0QAkJCSwffv27s4ghLAzR7LKeOGdw5wurObh2aNYeNcY+gZ623pYgnZM7xQUFODu7s6iRYs4f/48U6dOZfjw4Wi1WusyISEhlJSUUFpa2uJ5rVZLSUlJ94xcCGF36htN/Ht3Fl8fv8CAEF9SHoghQutr62GJn2mz9M1mM2lpaaxduxZvb28effRRevXq1eITd0VRUKlUWCyWVp/viD59Ov8PRKv16/S6jkoyOxH35rs/tZbP3jMbjGa2HMxl0/4cavUG7p8xgvtvG4m7pvNTOfaeuTv0ROY2Sz84OJi4uDiCgoIAmDFjBtu3b8fN7afbk5WVlRESEkJoaChlZWXW58vLywkJCenQgCoqdFgsSofWgeYXq6ysru0FnYhkdi4BRjMANZfls/fMNToDr392nLzztUQODuKJeeMYHOZPdZW+09/T3jN3h85mVqtVHdpZbvPP8LRp0/jqq6+ora3FbDZz8OBBZs6cSV5eHgUFBZjNZrZs2UJ8fDzh4eF4enqSnp4OQGpqKvHx8R0OIYSwf7X6JlZvOsEzfz9EcZmOxxPG8T/3RzM4zN/WQxPX0OaeflRUFAsXLiQpKQmj0cjkyZN54IEHGDJkCE888QQGg4FbbrmFmTNnArBq1SqWLl2KTqcjMjKS5OTkbg8hhOhZp89W8ffNJ9E3mLhpTF9m3TSAsD4+th6WaAeVoigdn0vpRjK9036S2bkEzJ0NQM2mrS2et6fMBqOZjQdy+TKtCG3vXjw6dywD+nb9PLQ9Ze4pPTW9I2dNCSHa5Wh2OR/vyaaksp5bovtx37RheHlKhTga2WJCiGsyNJn5545TfHuyhJDeXqT8KprRg4JsPSzRSVL6Qoiryi6u4Z0tGZRWNdA3yJsVCybhrnFre0Vht6T0hRBXqG80se1wAVu/LSDIz5OUB2IYPTCw7RWF3ZPSF0JYmS0Wdn5fyKaDeRhNFqaMC+OBGcNl7t6JyJYUQgBQWKrj/a2Z5F+oI2poH26/YYDs3TshKX0hXJzRZGHLN/ls/bYAn14aHp07ltiRWrm5iZOS0hfCheUU1/D+tlOcK9cTFxnKAzOGy60LnZyUvhAuyNBk5j8HcvkyrZBAf08W3xvF+KFyY3JXIKUvhIvJyK/kg22nKK9pZNqEcBJvGSof1LoQ2dJCuIj6RiPr92Rz8Nh5+gZ68UxSDCMHyAe1rkZKXwgXcCynnPe3naJW38SsGwdwz5TBeLjLSVauSEpfCCdmaDLz+Tf5bDtcQHiwL0/OGy+XPnZxUvpCOKnvT5Xy8e4zVNUZmDwulIduG4mnh+zduzopfSGcjMlsYdPBPLZ+W8CAvr48MieSEf1723pYwk5I6QvhRE7kVvDRl2e4UFlPfFQY8+8YiZu68/epFc5HSl8IJ1Bb30TqV3nsP3IO714afj93LLGjOnZ/auEapPSFcHBfHz/PR19mYWiycEtMP3558xA5q1ZcVbtKf/78+VRWVqLRNC++YsUK6urqeOWVV7BYLIwZM4aXXnoJDw8PMjMzWbJkCXq9ntjYWJYvX25dTwjRNRqbTLip1WzYk83uH4oYFOrHwrvG0C9Y7lMrrq3NNlYUhfz8fPbu3duivG+55Rbee+89hg4dypNPPklqair33nsvKSkpvPTSS0RHR/P888+zYcMGkpKSujWEEK7kZF4lf1r/Y4vnHrx9hBS+aJc2P+HJzc0FYMGCBcyZM4cPP/wQALPZjE6nw2w2YzAY8PT0pLi4mMbGRqKjowFISEhg+/bt3Td6IVzMmaJq/vafY9bHU6P78fYfpjK0X4ANRyUcSZt7+rW1tcTFxfHCCy9gNBpJTk5m8ODB/O///i/z58/H19eXiIgIZs6cycmTJ9FqtdZ1tVotJSUlHRpQR+7qfjmt1q/T6zoqyexELp4h21o+jac7u9MK+XR3FtreXrz82M309vPs6RH2KKfdztfQE5nbLP2YmBhiYmKsjxMTE9myZQtHjhxhy5YtREREsHLlSlauXMldd93V4hrciqJ0+JrcFRU6LBalQ+tA84tVVlbX4fUcmWR2LgFGMwA1l+VTe2j4n78coKK2kX7BPixOjMLY2ERZY5MthtkjnHk7X01nM6vVqg7tLLc5vZOWlsahQ4esjxVF4fDhw4wYMYIBAwagVqu57777+O677wgNDaWsrMy6bHl5OSEhctiYEJ2lbzTy4ppD6BuNLE2O5aWFN9InoJethyUcWJulf+koHYPBgE6nY+PGjfzpT3/i2LFjlJeXA7B7927GjRtHeHg4np6epKenA5Camkp8fHz3JhDCCZVW1fOfA7n8zxtfU1ym54mEcQzpJ9fMEdevzemdadOmcfToUebOnYvFYiEpKYmYmBieeuopkpOTcXNzY+DAgaxYsQKAVatWsXTpUnQ6HZGRkSQnJ3d7CCGchaIorN9zhh3fFVqfezZ5EiP6ud78tugeKkVROj6B3o1kTr/9JLNz8Zh1O+fK9fw/8/7I5LGh3BzVD7VaRVx0hNNmvhpn3s5X01Nz+nLWlHA4Kau/wV2j5v9+d5Oth3LdFEVhzw/FjBvaB986AxZF4bFfjmPCiGC5MbnoFlL6wuFU1DbaeghdwmyxkH66jHW7smAX/E0Bdzc1E0dq215ZiE6S0hfCBhqbTPzts+NkFlRZn1NQQHbuRTeT0heiBymKwpZv8tl4MK+Vr4FKWl90Myl9IXrQP7Zk8O3J1s9Sbz6ZsYcHJFyO3F1BiB6iKAqHT5YQ1sebxKlDr/w6yIe3ottJ6QuXUKNvwhZHJxtNFjZ/lYe+0YjJrKAAcZGheGiu/NVTZEpf9AApfeH0zlfoefpvX/FlelGP/tzsohoeWbWPTV/l8fqnx2gyNV9bx9PdDQ/3K29QLtM7oidI6QunV1bdfIjn8ZyKHv25m7/56cPaM0U1NBktAHi4q3F3u/JXz2Lp+AUKhego+SBXOBRzJ87WVl/sUUsPTu/U6JvIyKtq8VxJZT0AHu5urZe+osj0juh2sqcvHIrx4hRJR6gutn5nLu/Rll3fF7Lt24Irnj988sIVf2SO5Ta/0/DQuOHhfuWvntki0zui+8mevnAoRpOlw+tc6tHu2NH/9+4zAOSeq6VPQC/io/rRL9iHr09cYHCYH3nnf7qWyrGL00ue7mrc1Fdpd2l90c1kT184lM6Uvsnc3Pbtnd6xKIp1KuZqymsa+OJQvvVxYZmOXWmF7Pz+LGdL6igs1fGLsWHWr4cH+3CuXA80T++or1L6Uvmiu0npC4fSudJvXqe9e/p7fyjmuTXfkne+FmieFjJbLOz47izl1Q18/k0+L7zzHZ/tz2VAX19efuQmXn4kjvBgX2r1Rr45cQE3tYobx/S1fs/IwUHW/29taucS+SBXdDeZ3hEOpTNz+pdK36IoNDaZ+OrYeaZPiLjq3nZOcQ0A//g8g6XJE/nbZ8c5XVgNwJdphVTUGgB4+ZGbCAn0tq7n5+1OZV0jmQVVRA0LxtfL3fq1mOHB7Py++Rr5Gjc1BlrPIZ0vupvs6QuHcn17+grvfZHJR1+e4UxRtfXrFotCfaORvPO1FFyoo7GpuZAvVNbzrx2nrYUPWAv/gRnDWxQ+gL+PB2dLdBiMZiaPDW3xtQF9/Ui+YyQAQX6eBF7lpubS+aK7yZ6+cBhmi4W8czXWx5W1jWzYm82vZ42il8fV/ylb5/QtkHa67OL/N0/ZVNUZ+HBnlvVD1st9l1na6vOerZxc5Xdxz16tUhE1PLjF1zRuaqbGhDM1JhwA717urPzdTTy35tuWY7UouCNE92lX6c+fP5/Kyko0mubFV6xYgcViYeXKlej1ekaOHMnLL7+Mh4cHmZmZLFmyBL1eT2xsLMuXL7euJ8T1+M/+XLYdPmt9/Nn+HL7LLCVqaDBxl+1Z/9yldwdNP5saMpgs7E4r4j8Hcls9O/bnhvTzZ1h4ADeO6ctfPzlKbb2x1cso+Hk31/WYwYGoL5un0bhduQ/fN+indwq/nzsWNoDRaMbrmqMR4vq0Ob2jKAr5+fmkpqZa/xs6dChPPPEEK1as4IsvvgDg008/BSAlJYVly5axY8cOFEVhw4YN3ZtAuIysn02zABjbeVTOpemd0qoG63NNRjMZBVU0mSzoGowMCGm+3dzN48NarKtxU/P7uWP51a3DGRzmb/2gtbU/FH4+Hs3jaeV8gLY+oB3RvzeBfp5XTBkJ0dXa3AXPzc0FYMGCBVRXV3Pfffeh1WqJjo5m1KhRACxduhSz2UxxcTGNjY1ER0cDkJCQwOuvv05SUlL3JRAu69IF1Orqjddc7lLp//xs3sYmM9lFP00VxYzQ8sg9kYQGeTP/jpGcKaxmx/eFJE4dSpB/L+tyl7q7tSNw/LyaS99s7vgJARo3tbXwneO+YMJetVn6tbW1xMXF8cILL2A0GklOTmbOnDl4e3vz9NNPk5uby4QJE3j22WfJyMhAq/3pVm9arZaSktavHX41HbnB7+W0Wr9Or+uoXCmz+2V715cuWtBotlzzdfDwvHKWvKS6kXqDyfo4JNiH8aN+miIKCw0gftLAK9bTXLx8Qkiw3xU/M7ym+UNetZv6iq+1tZ369vWzvntobVlX2s6XSObu0Wbpx8TEEBMTY32cmJjIypUr6dOnD+vXr6dfv34sWbKENWvW8Itf/KLF29jmqwZ27HiEigpdp06X7+yd5B2Zq2W+/HDNOn1zyeYWVbf6OjQYTHi6u1HTyj11v8+40OKxYjK367W89O6iXt94xfJ6ffPPUSyWK752te/t6e6GwWimqlJPH2NzvprLlnW17QySuSPUalWHdpbbnNNPS0vj0KFD1seKohAYGEhUVBT9+/fHzc2NWbNmcezYMUJDQykrK7MuW15eTkhISAcjCNG6y28l2HTxA9riMv0Vy1osCs++fYid3xfSZLzymPjymsYWx9F792rvMTMX5/Q1V87pDw71544b+rNg9mjrcw/PGsX0CeFX/W5L5k9k7s2Dre8ghOhubf5Lq6ur45VXXsFgMKDT6di4cSNvvPEGJ0+e5Pz58wDs3buXyMhIwsPD8fT0JD09HYDU1FTi4+O7N4FwHZe9abxU5lV1BvSNLef1q3UG6uqNZBZUUa0zWJ/3dHezHnkzakBv6/P+3h7tG8LFMbi1cjSOWq3i/unDCe790/E3N0f146HbR171+0WE+DJn8uB2/WwhukKb0zvTpk3j6NGjzJ07F4vFQlJSErGxsaxYsYJFixZhMBgYPXo0zzzzDACrVq1i6dKl6HQ6IiMjSU5O7vYQwjU1Npnx83anrt5IUamOkQMCrV+rvHgSVd75WkICvXDXqDGaLPh5u1Ne0zwNM2pgoPW4/d6+7Sv9sD4+lNc0tnppZCEcQbsOoF+8eDGLFy9u8dzUqVOZOnXqFcuOGjXKevimEN2pqs7A+KF9OJZTQVGZnpEDAjFbLKhQUXFxHl/XYETXYGRYRADZRTX4ebszPCIAL08N8VH9+HBnFtB8Nm17PDJnDKfPVrc4okcIRyJnTQmH0dohAdreXvj00lBUpgPg/1t3hP59fQm+rJQjtL4XS9+D394decX3ae+cuncvd2JGaNteUAg7JaUvHJpFUQjX+lJUpkPXYCS7uIZqXfM7gF4ebtbr6AT6eeKmVlkvlXDJH34VTVl1Q2vfWginJKUvHEZre/pGk4X+Wl++PnHeesZueU0jeedr0fb2or7RSEWtAS8PN6ZNCGf0z+b9AcYMCmrluwrhvOTTKOHQTCYL4SE+NDaZOXTyp2Pv887XERLohefFC7F5eriRNGOETM0IlyelLxya0WQhQtt8Ykr66TKG9PMn0M+TIH9PEuKHWG9L6HWNq3AK4UrkN0E4hFp9E1k/u1bOJUazhfBgH+vjMYMCmTtlCKiaL3F8qfQ9Pa59JU0hXIWUvnAIP2SVtfr8lHFheHlqCOnthcFk5taJ/VvcEcta+m1cPlkIVyGlLxxDK5/iDosIIHZU82U+lv/mBjRuKtzULWcsL5V+Z67nJIQzkjl94RCUVkpb87M9ek93tysKHyBySB8Ael/l9oRCuBrZ0xcOQd/402WQJ48N5UR+JZNG921zvTvjBnLjmL6E9Jb7UQkBUvrCQdTom6z//5u7xrR7PbVKJYUvxM9I6Qu7Vt9o4j8Hctj7QzEAf3wkzsYjEsKxSekLu6QoCt+fKuXfu89Qq2/i1okR/DJ+CAMiAl3u5hpCdCUpfWE3DEYzXxwqwGJROFtax4ncSgb29ePJeeMZHOZv6+EJ4RSk9IVdsCgK73yeQXpWGW5qFRqNmgduHc70ieGtHpUjhOgcKX1hFz7dl0N6Vhm/mj6MGbH9sSiK3EJQiG4gpS9symS2sOWbfLYfPsu0CeHcNqk/KpUKdavX1BRCXC8pfWEzBRfqeG9rJoWlOuIi+5I0YzgqlZS9EN2pXaU/f/58Kisr0WiaF1+xYgVRUVEAfPjhh+zYsYO1a9cCkJmZyZIlS9Dr9cTGxrJ8+XLrekJA8w3NU7/OY8fhQvy83Xk8YRwT5JLHQvSINttYURTy8/PZu3fvFeWdnZ3NmjVrGDhwoPW5lJQUXnrpJaKjo3n++efZsGEDSUlJXT9y4ZDyL9Ty9uYMSirruXl8GPdNH4ZPL/e2VxRCdIk2PynLzc0FYMGCBcyZM4cPP/wQgKamJpYtW8aTTz5pXba4uJjGxkaio6MBSEhIYPv27d0wbOGI9h4pZsUHaZRU1pM8cyQPzx4thS9ED2tzT7+2tpa4uDheeOEFjEYjycnJDB48mAMHDjBv3jwiIiKsy5aWlqLV/vQ2XavVUlJS0qEB9enj26Hlf06r9ev0uo7KETJX1TXy9sbjfH30HAB/eHAit0yIaGOtq3OEzJ1y8fLPreVz2szXIJm7R5ulHxMTQ0xMjPVxYmIir776KgMGDOC5557j8OHD1q9ZLJYWH8QpitLhD+YqKnSdugyuVuvncmdq2ntmfaORfUeK2X74LAajhSnjwpg8LpSR/QM6PW57z3w9AozNN3GvuSyfM2e+Gsncfmq1qkM7y22WflpaGkajkbi45mueKIrC6NGj+fHHH7nnnnuor6+nvLycxYsXk5KSQlnZTze7KC8vJyQkpMMhhOPLyK/k3S8yqaozMCwigIdnjSKsj0/bKwohulWbpV9XV8frr7/Oxx9/jNFoZOPGjSxfvpyVK1cCcPjwYd544w3+8pe/AODp6Ul6ejoTJ04kNTWV+Pj4bg0g7ItFUdh4IJcvDhUQGuTN8w9NZGi4vxyKKYSdaLP0p02bxtGjR5k7dy4Wi4WkpKQW0z2XW7VqFUuXLkWn0xEZGUlycnKXDljYJ6PJTMEFHXt+KOLbjBJuHh9G0m0j5DaFQtgZlaIodnUfOZnTbz97yXw4o4R/7ThFg6F5TnreLUOYfdPAbtm7t5fM3SFg7mwAajZtbfG8M2e+Gsncfl0+py/E1RiMZv795RkOHD3H4DB/bpsUwYAQP/oFy9y9EPZKSl90yvkKPas3naC4TM/smwYy9+bBcoE0IRyAlL7osKzCav722THUahX/fV8UYy/efFwIYf+k9EW7lVTW89GXZzieW0Ef/16kJMXI/WeFcDBS+qJdquoMPLfmWwBun9Sf2TcNxN/Hw8ajEkJ0lJS+uKqKmkZSv8qjwWAiq6gagF+MDeVXtw637cCEEJ0mpS9a1WAw8ffUE+RfqKNvkDf9Q3yJj+rHOJm/F8KhSemLKxzLKedfO05TVWtg4V1jiBsbaushCSG6iJS+sKqsbeSz/TkcOllCv2Afnk8ey9B+AbYelhCiC0npCwA+25/D9sNnAZgzeRB3xg3CXSPH3QvhbKT0XZzRZGHjwVy2Hz7LpFEh3DttKMEBchimEM5KSt+FFZbq+MfnGRSV6YiP6sdDt4+Qs2qFcHJS+i5IURR2fl/Ip/ty8PFy56nE8UQNC7b1sIQQPUBK34VYLAq552rZdriAI2fKiRkezK9njcLPW06yEsJVSOm7iJLKet5KPcHZEh0Av7p1OLfFRsjNTYRwMVL6Tk5RFL4+foF1u7IwWywE+nny2C/HMaSfv62HJoSwASl9J1ZSWc/Gg7l8l1nKyP69+e3dYwjy72XrYQkhbKhdpT9//nwqKyvRaJoXX7FiBadOnWLt2rWoVCrGjh3L8uXL8fDwIDMzkyVLlqDX64mNjWX58uXW9UTPOXD0HB9sO4VapSIhvvlOVmq1TOUI4eraPD5PURTy8/NJTU21/ufv78+7777Lxx9/zObNm7FYLHz00UcApKSksGzZMnbs2IGiKGzYsKHbQ4if1OibeHvzST7YdgqfXhqW/tdE7vrFICl8IQTQjj393NxcABYsWEB1dTX33Xcf06ZN48UXX8TXt/m+jCNGjODcuXMUFxfT2NhIdHQ0AAkJCbz++uskJSV1XwIBNP9xPnjsPJ/szcZgNMtZtUKIVrVZ+rW1tcTFxfHCCy9gNBpJTk5m8ODBTJ48GYDKykrWrVvHypUrKS0tRavVWtfVarWUlJR0aEAducHv5bRav06v66i0Wj+KSut489NjnMipIHJIHx5LjKJ/X+d9LZx2O7u7Aa3nc9rM1yCZu0ebpR8TE0NMTIz1cWJiIvv372fy5MmUlJSwcOFC5s2bx4033kh6enqLQwAVRenwIYEVFTosFqVD60Dn7yTvyHoHevOvz0+y5VA+Hho3fj1rFFPGh6FW4bSvhTNv5wCjGYCay/I5c+arkcztp1arOrSz3Gbpp6WlYTQaiYuLA5qLXKPRkJOTw8KFC5k/fz4LFiwAIDQ0lLKyMuu65eXlhISEdDSDaIPZYiHvfB3rP0wnp6iGG0aH8MCtwwnw9bT10IQQdq7NCd+6ujpeeeUVDAYDOp2OjRs3Mn36dH7zm9/w1FNPWQsfIDw8HE9PT9LT0wFITU0lPj6++0bvgiprG3npn+n839p0yqsbWHRPJIvuGSuFL4Rolzb39KdNm8bRo0eZO3cuFouFpKQkTpw4QXl5Oe+//z7vv/8+ANOnT+epp55i1apVLF26FJ1OR2RkJMnJyd0ewlVkF9fwxn+O09hk4ubxYfw2YTymRqOthyWEcCAqRVE6PoHejWRO/0r6RiO7vi9k67cFBPp58mRiFOHBPk6d+WqcOXPA3NkA1Gza2uJ5Z858NZK5/bp8Tl/YjqIofHuyhI/3nKGu3sjogYE8Oncsvl7uth6aEMJBSenbqQuV9azdcZrMgioGh/nzZOJ4hoT5ywXShBDXRUrfzlgUhW3fFpD6VR7uGjfm3z6CW6LD5YxaIUSXkNK3I1V1Bj76Mov002XEjtTy4G0j5KgcIUSXktK3AxZFIfVgHlsO5QNw//Rh3D6pv0zlCCG6nJS+jRWV6fhsXw5HcyqYPDaUO38xiNAgb1sPSwjhpKT0baS+0cRnB3LY+0MxbmoVD90+gmkx4bJ3L4ToVlL6NvBjdjlrd5ymus5A9LBgkmeOpLfM3QsheoCUfg/SNRj5aFcW32aUEK714fGEcQwOk9sWCiF6jpR+D8k5V8PqjSeo1Tdxz5TB3Bk3EI2bXOteCNGzpPS7WV19Ez9klbFuVxa9PDQ8MieS2FFy5VEhhG1I6XejI1llvPGf4yhA5OAgHpkTKZdQEELYlJR+Nygq0/HhziyyCqvxdHfjodtHEBcZKmfVCiFsTkq/C5nMFrYdPsvnX+ehUqnw93bnqXuj5MNaIYTdkNLvIkWlOt79IpOCkjomjQrhwdtH4O/tYethCSFEC1L618lssbDnh2I+25+Dp7sbv587Vj6oFULYLSn9VmTkV9JkshA9LLjNZddszuD7U6VEaH35n/uj5AJpQgi7JqX/M3X1TWz+Kp/dPxQB8ObT8Xh5XvslOnKmjMnjQnl49mjUcgkFIYSda1fpz58/n8rKSjSa5sVXrFiBXq9n5cqVGAwGZs2axdNPPw1AZmYmS5YsQa/XExsby/Lly63r2SuLonDgx3NsOZRPVa2BQD9PquoMFFyoY9TAwKuuZzSZMZkVQoO8pfCFEA6hzVNCFUUhPz+f1NRU638jR47k+eefZ/Xq1WzdupUTJ06wf/9+AFJSUli2bBk7duxAURQ2bNjQ7SGuh8ls4aNdWfxrx2mMJgtLkmP534cnAZB3ofaa69YbzABtvhsQQgh70WZb5ebmArBgwQKqq6u57777GDFiBAMHDqR///4A3H333Wzfvp1hw4bR2NhIdHQ0AAkJCbz++uskJSV1X4LrcKqginW7sigu13PjmL4k3zHSWuDBAb3IO3ft0m8wmAApfSGE42izrWpra4mLi+OFF17AaDSSnJzMwoUL0Wq11mVCQkIoKSmhtLS0xfNarZaSkpIODagjd3W/nFbr167ljmeXs3F/Nt9nlBAS5M2Sh2/gxsjQFpc1HjUoiKyzVdf8nlUNzaUfGuLX7p/d1Wz1c23JaTO7uwGt53PazNcgmbtHm6UfExNDTEyM9XFiYiKvv/46EydOtD6nKAoqlQqLxdKiOC893xEVFTosFqVD60Dzi1VWVtfmchn5lfzlk6OYzArTYsK5f/owPNzdKC/XtViuX5A3Xx09R05+Bf4+rR9vf66k+Z1AU0NTu352V2tvZmfizJkDjM3ThTWX5XPmzFcjmdtPrVZ1aGe5zdJPS0vDaDQSFxcHNBd5eHg4ZWVl1mXKysoICQkhNDS0xfPl5eWEhNjPMetnS+r48/qjhPbx5tkHJ1zzOjiDw5r/4uadryWqlUM3m4xmNh1onvqS6R0hhKNo84Pcuro6XnnlFQwGAzqdjo0bN/Lf//3f5OXlUVBQgNlsZsuWLcTHxxMeHo6npyfp6ekApKamEh8f3+0h2ut4bgUWReHJxPFtXvhsYKgfKlVz6f+cRVH4/lQp/+/adHLO1TI4zJ+wPnJ7QyGEY2hzF3XatGkcPXqUuXPnYrFYSEpKIiYmhpdffpknnngCg8HALbfcwsyZMwFYtWoVS5cuRafTERkZSXJycreHaK/cc7X0DfImpLdXm8v28tDQr48P+Rd+ertVWt3A+t1nOHKmHDe1it/cOZpfjA2VWxwKIRxGu+YlFi9ezOLFi1s8FxcXx+bNm69YdtSoUXz66addMriupCgKuedqGTMoqN3rDArz42h2RfNhqxfq+PP6HzGZFaaMC+O+6cPkMslCCIfjMpPRFbWN1OibGBre/iteDgnz5+vjF/jrp8c4ntP8ge4L/zWBkECZzhFCOCaXKf3ci8fcD+nX/tIfdPGSyMdzK5gdN5AZsf0JuMqRPEII4QhcqvTdNWoitO0/tGlAX1+mTQgnamgfxg9t++JrQghh71yi9I0mM9+fKmVgqF+HbkbuplYz//aR3TgyIYToWU5f+ufK9azblUVVnYGZNwyw9XCEEMKmnLb0GwwmNuzNZv+P59C4qXl49ihuHt/P1sMSQgibcsrSz8yv5L2tp6isbeT2Sf2ZHTdQbl0ohBA4Wekbmsx8si+bPT8U0zfQi+cemsiwiABbD0sIIeyG05T+ydwK/rQujbLqRmbERjDvlqF4XrxqoRBCiGZOUfo5xTWsXPcDQX6ePJMUw8gBV7/blRBCuDKnKH0fL3fmxg/l1ph+csVLIYS4hvYftG7HQoO8efjuSCl8IYRog1OUvhBCiPaR0hdCCBcipS+EEC5ESl8IIVyIlL4QQrgQKX0hhHAhUvpCCOFC7O7AdrW68zcZv551HZVkdiKhoUDr+Zw28zVI5u5ZR6UoitLhnyKEEMIhyfSOEEK4ECl9IYRwIVL6QgjhQqT0hRDChUjpCyGEC5HSF0IIFyKlL4QQLkRKXwghXIiUvhBCuBApfSGEcCEuX/queBUKyewaJLNr6Ghmu7vgWnf65ptvOHPmDGq1mjvvvJOAgADc3NxQFAWVyjkv7iSZJbNkdh5dkdll9vTT0tL4wx/+gK+vL3v27OHNN9/k888/x2QyoVKpnHIPQTJLZsnsPLoqs8tcZfP999/HZDLx29/+Fr1ez2effUZubi6xsbHMnj0btdr5/v5JZsksmZ1HV2V2vlfmKvr27ct3331HYWEhPj4+3HvvvQwaNIgjR45QW1tr6+F1C8ksmSWz8+iqzE5d+jk5OZw5c4aqqiomTZrE4MGDOXToEGVlZXh5eXHvvfeSkZHBtm3bbD3ULpOdnc3x48epqKhg+vTphIWFcejQIcrLy502s2xn2c7Omrk7trPTlv6+ffv49a9/zXvvvcdDDz3E0aNHCQkJ4fjx4+zbt4+zZ8/i4+PD1KlTnWb+78CBAzz22GN89NFH3HXXXZjNZqZMmcL333/P3r17nTKzbGfZzrKdO5bZ6Y7eURQFnU7HJ598wp///GcmTZrE5s2b2b59O3FxcajVanJycti8eTPjx49ny5YtvPfee7Ye9nUrLS3lzTff5I9//CM33HADTz/9NEeOHGHChAno9XqysrKcKrNsZ9nOsp07l9npSl+lUuHn50dAQACFhYVMmjSJOXPm4OPjw9atW7nrrrtITEwkLS2NyspK1q5dy4ABA2w97OsWFBREREQEYWFhXLhwge3bt2M0Gjlz5gyPPvooDz74INnZ2ZSXlztFZtnOsp1lO3dyOytOxGKxKBaLRTGZTMratWuVV199VTl79qz16xs3blRuvfVWpaKiwoaj7FoWi0VRFEWpqalR9uzZoyiKopw5c0b55JNPFEVRlB07dih33XVXi9fB0cl2lu2sKLKdO8up5vRVKhUqlYqSkhLuuece8vPz+eyzzygsLARg7ty5REVFUV1dbduBdqFLJ2TU1NQwbdo0AIYNG0ZiYiIAt99+O2PGjKGurs5mY+xqsp1lO4Ns585yqtIHOHXqFG+++SZ+fn6kpKRw5swZ1q9fz7p169i0aRNHjhzB19fX1sPsUqdOneIf//gHer0egKamJrKzs0lLS+Pzzz/n+PHj9OnTx8aj7FpZWVm89dZbLrWds7KyeOedd5x+O5vNZsxmM+A6v8+XZ+7O32eHPzlr//797Nq1C61WS0xMDPHx8eh0Ous/hAsXLnDgwAEyMjKor69n4cKFjBgxwsajvj5tZW5oaOCDDz4gKyuLmpoannvuOYYPH27jUV+fvLw8Pv/8cx5//HHUajWVlZV4enri4+MDOOd2biuzM27n/fv3k5qaitlsZtasWcycOdMlfp+vlbnLt/P1zkHZUlpamjJ79mxl48aNyoYNG5QJEyYo//73vxVFURSTyaQYjcYWyzc0NNhimF3qWpnNZrNiNpsVRVGUpqYmRVEUpa6uzmZj7QqX5jh37typ3Hrrrco777zTYrv+PPMljr6d28p86euK4jzbWVEU5dChQ8qcOXOU3bt3K9u2bVPi4uKUo0ePKorinNtZUa6dubu2s0MfvVNeXs6UKVOYO3cuAEOGDOHZZ59FpVJx//33A3Dw4EF0Oh2zZs3C09PThqPtGu3JfODAAerr65k5c6Z1r9DR5eXlERwcTFlZGW+99Ra///3vcXNzA0CtVvPVV19RV1fnNNsZrp5ZuXhxrYMHD6LX651mO2dnZ3Pvvfcyffp0oPnY/IqKCgDrJQac7ff5Wpkvze939e+zQ8/p+/j4UFRUZJ0LmzhxIi+//DKvvvoq+/btA6Curo5x48YBOMWV99qTWafTMXbsWMDxM18af0hICDNmzCAuLo5z586xevVqzGYzarWa+vp6p9rO7c3sTNsZoLa21vohLUBjYyMnT55ssYwzbWdoX+au3s4ON6f/448/UlNTg7+/PzExMTz22GNYLBbeeust6zLr1q2jqqqKxx9/HLPZbN0jdFSunNnT05ObbrqJkpISfH198fHxYe/evezevZuwsDAeeeQRNBqNZHZQP/74I9XV1fTp04dx48aRmZlJ//798fX15bnnnmPChAnce++9bNq0iSFDhjB+/HhbD/m62TqzQ+3p79+/n+eff579+/fz7rvvsnjxYt58803q6upYtGgRBoMBAL1eT3l5OYDDX23P1TN/9NFHLFy4kL59+1rf2k6ePJnbbruN7Oxs3n33XQCHLz9XznzgwAHefvttfve73zF69Gh8fX0xmUxUVVUxYMAADh48yJo1a/Dy8rL1kK+bPWR2qD39Z599lvj4eGbPno3JZGLRokWYTCY++OADnnrqKYxGIwEBAWRmZvLqq686/JEMIJlNJhOPP/44Fy5cYNOmTdZlmpqa+O677xgxYgQhISG2G2wXkcxXZv7jH/9IVlYWDQ0NrFy50iX+bfdEZofaJfT398doNAKg0Wh455138PDw4A9/+AN//etf+e1vf8vs2bP529/+5hT/QEAyazQa/v73vxMeHs7vfvc76zIeHh5MmTLFKcoPJPPPMy9cuBCA+vp6jh49yqpVq5z+33aPZr7u43+62c8PW9q5c6cSGxtrPaRJURSlvr5eWbRoUYvnHJ1kbj3zY489pqSlpdlieN1CMree+dFHH1UyMjKUiooKpaCgwBbD7FL2ltlu9/SVy2adsrKyuO2223jqqadISUnh+PHjAHh5eeHr6+sUN06QzNfO7OXlRUNDgy2G2aUk87Uz+/j4UFpaSlBQkENfPM1eM9vtcfr19fXWD7EKCwv55z//yXPPPcdDDz2EoigsWLCAlJQU6urqOH36NAMHDrTxiK+fZJbMkrk585NPPmnjEV8/e81slx/k7tu3j02bNtG7d2/GjRvX4qQEi8WCWq1m165dnD59moqKCpKSkhx+zk8yS2bJLJl7gt2V/pkzZ1i4cCEvv/wyeXl5FBYWUlRUxDPPPENERAQmkwmNxm7foHSKZJbMktl52Htmu5vTNxgM3HzzzcTFxZGUlMQDDzzAoEGDePXVVykrK0Oj0XDw4EF27NiB2Wx2ilujSWbJLJklc0+xm9I/e/YsWVlZ+Pv78+2337J7924ABgwYwLx58+jXr5/1MgO1tbVERkbi5ubm0KdiS2bJLJklc09ntov3VTt37uS1114jODiY8ePHM3nyZNavX09gYCATJkxg0KBBhIaGkpmZCcCdd95p4xFfP8ksmSWzZLYFm+/p19fXs3nzZv70pz+xdu1aRo8eTVNTE0ePHuXtt99m586dAPj5+VFbW4vBYHD4t4CSWTJLZslsKzbf01epVFRWVnLu3DnGjBnD7NmzCQkJQaPR4Ovry//93//x5Zdf8sMPP7B69WqnuJyqZJbMklky24rNS9/Ly4vExEQOHDhAREQEo0aNYuLEiRQVFZGRkcG7776LRqPBy8vLaU4/l8ySWTJLZlux+fQOwNSpU/H39+eLL77g1KlTuLm5kZCQwOnTp1EUhYEDB9rFi9WVJLNklszOw5Ey20XpBwUF8eCDD2KxWPjXv/7F1q1b2bp1K9XV1QQGBtp6eN1CMktmyew8HCmzXZ2cVVlZyddff82WLVvw9/dnwYIFjB492tbD6laSWTI7K8lsn5ntqvQvaWpqQqVS4e7ubuuh9BjJ7Boks2uw58x2WfpCCCG6h13M6QshhOgZUvpCCOFCpPSFEMKFSOkLIYQLkdIXQggXIqUvhBAuREpfCCFcyP8PMZA6qYPY15oAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1825,22 +621,22 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[CUSUMChangePoint(start_time: 1970-01-01 00:01:27.200000, end_time: 1970-01-01 00:01:27.200000, confidence: 1.0, direction: increase, index: 242, delta: 74.2245742406136, regression_detected: True, stable_changepoint: True, mu0: 536.2953569156037, mu1: 610.5199311562174, llr: 551.1893035744112, llr_int: inf, p_value: 0.0, p_value_int: nan)]" + "1" ] }, - "execution_count": 72, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "change_points" + "len(change_points)" ] }, { @@ -1852,7 +648,7 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": 29, "metadata": {}, "outputs": [ { @@ -1889,7 +685,7 @@ " \n", " 1\n", " 1970-01-01 00:00:00.200\n", - " 488.000000\n", + " 488.100000\n", " \n", " \n", " 2\n", @@ -1898,13 +694,13 @@ " \n", " \n", " 3\n", - " 1970-01-01 00:00:03.600\n", - " 491.400000\n", + " 1970-01-01 00:00:03.000\n", + " 491.000000\n", " \n", " \n", " 4\n", - " 1970-01-01 00:00:04.000\n", - " 492.000000\n", + " 1970-01-01 00:00:03.600\n", + " 491.400000\n", " \n", " \n", " ...\n", @@ -1912,53 +708,53 @@ " ...\n", " \n", " \n", - " 424\n", + " 417\n", + " 1970-01-01 00:02:28.800\n", + " 636.600000\n", + " \n", + " \n", + " 418\n", + " 1970-01-01 00:02:29.000\n", + " 636.800000\n", + " \n", + " \n", + " 419\n", " 1970-01-01 00:02:29.200\n", " 637.200000\n", " \n", " \n", - " 425\n", + " 420\n", " 1970-01-01 00:02:29.400\n", " 637.266667\n", " \n", " \n", - " 426\n", + " 421\n", " 1970-01-01 00:02:29.600\n", - " 637.300000\n", - " \n", - " \n", - " 427\n", - " 1970-01-01 00:02:29.800\n", - " 633.500000\n", - " \n", - " \n", - " 428\n", - " 1970-01-01 00:02:30.000\n", - " 633.500000\n", + " 637.333333\n", " \n", " \n", "\n", - "

429 rows × 2 columns

\n", + "

422 rows × 2 columns

\n", "" ], "text/plain": [ " time SOURCE_S\n", "0 1970-01-01 00:00:00.000 487.800000\n", - "1 1970-01-01 00:00:00.200 488.000000\n", + "1 1970-01-01 00:00:00.200 488.100000\n", "2 1970-01-01 00:00:01.800 489.800000\n", - "3 1970-01-01 00:00:03.600 491.400000\n", - "4 1970-01-01 00:00:04.000 492.000000\n", + "3 1970-01-01 00:00:03.000 491.000000\n", + "4 1970-01-01 00:00:03.600 491.400000\n", ".. ... ...\n", - "424 1970-01-01 00:02:29.200 637.200000\n", - "425 1970-01-01 00:02:29.400 637.266667\n", - "426 1970-01-01 00:02:29.600 637.300000\n", - "427 1970-01-01 00:02:29.800 633.500000\n", - "428 1970-01-01 00:02:30.000 633.500000\n", + "417 1970-01-01 00:02:28.800 636.600000\n", + "418 1970-01-01 00:02:29.000 636.800000\n", + "419 1970-01-01 00:02:29.200 637.200000\n", + "420 1970-01-01 00:02:29.400 637.266667\n", + "421 1970-01-01 00:02:29.600 637.333333\n", "\n", - "[429 rows x 2 columns]" + "[422 rows x 2 columns]" ] }, - "execution_count": 73, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -2288,17 +1084,195 @@ "plt.xlabel('Time of source video in seconds')" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Detecting multiple change points" + ] + }, { "cell_type": "code", - "execution_count": null, + "execution_count": 46, "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "DEBUG:root:Detecting increase changepoint.\n", + "INFO:root:Max iteration reached and no stable changepoint found.\n", + "DEBUG:root:Detecting decrease changepoint.\n", + "DEBUG:root:Detecting increase changepoint.\n", + "DEBUG:root:Detecting decrease changepoint.\n", + "INFO:root:Max iteration reached and no stable changepoint found.\n", + "DEBUG:root:Detecting increase changepoint.\n", + "DEBUG:root:Detecting decrease changepoint.\n", + "DEBUG:root:Detecting increase changepoint.\n", + "DEBUG:root:Detecting decrease changepoint.\n", + "DEBUG:root:Detecting increase changepoint.\n", + "DEBUG:root:Detecting decrease changepoint.\n", + "INFO:root:Max iteration reached and no stable changepoint found.\n", + "DEBUG:root:Detecting increase changepoint.\n", + "DEBUG:root:Detecting decrease changepoint.\n", + "DEBUG:root:Detecting increase changepoint.\n", + "DEBUG:root:Detecting decrease changepoint.\n", + "INFO:root:Max iteration reached and no stable changepoint found.\n" + ] + } + ], + "source": [ + "multi_cp_ts = TimeSeriesData(df.loc[:,['time','SOURCE_S']])\n", + "\n", + "historical_window = 15\n", + "scan_window = 15\n", + "step = 60\n", + "changepoints = []\n", + "n = len(df.loc[:,['time','SOURCE_S']])\n", + "for end_idx in range(historical_window + scan_window, n, step):\n", + " tsd = multi_cp_ts[end_idx - (historical_window + scan_window) : end_idx]\n", + " changepoints += CUSUMDetector(tsd).detector(interest_window=[historical_window, historical_window + scan_window])" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:No change points detected!\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEWCAYAAACKSkfIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA6F0lEQVR4nO3deVyVdd7H/9c5bLIqy0EU3DcUFVDMGI3UrNTKDKkmJrknx5ls2ui+h1+LZrdOv9t+5UwzTdnktM2YTZmNYlYuuVdmQeYGiogioLJv5wCHs1y/P9CTKHoAOZzt83w8fDw817ku+H6uL7y5zve6ru+lUhRFQQghhFtQ27sBQgghuo+EvhBCuBEJfSGEcCMS+kII4UYk9IUQwo1I6AshhBvxtHcDLlddrcNs7vhVpKGhAVRWam3QIsd1ec2Bv3sIgPpV79mrSTYn/XwlV+x3R+9nW+zzztasVqsIDvZv9/oOF/pms9Kp0L+4rbtpVfP581cuc0GuXl9brlmzi/a7Q9djo33eHTXL8I4QQriRdoX+jh07SE5OZubMmbz44out3vvggw+YN2+e5XVubi7JycncfvvtLFq0CKPR2LUtFkII0WlWQ7+oqIgXXniBlStXsnHjRnJycti9ezcA+fn5rFq1qtX6GRkZLFmyhC1btqAoCmvXrrVNy4UQQnSY1dDftm0bs2bNIiIiAi8vL1599VViY2Npbm5myZIlPPHEE5Z1S0pKaGpqIi4uDoDk5GQ2b95ss8YLIYToGKsncgsLC/Hy8mLhwoWcO3eOKVOmkJ6ezksvvcTcuXOJioqyrFtWVoZGo7G81mg0lJaWdqhBoaEBHVr/UhpNYKe3dVatavbyuHKZC3L1+tpyzZpdtN8duh4b7fPuqNlq6JtMJrKysli9ejV+fn488sgjfPLJJ5w7d45nn32W/fv3W9Y1m82oVCrLa0VRWr1uj8pKbafOYGs0gZSX13d4O2d2ec09DSYAal14P0g/X8kV+93R+9kW+7yzNavVqg4dLFsN/bCwMBITEwkJCQFg+vTpHDhwgBMnTnD33XfT0NBARUUF6enpZGRkUF5ebtm2oqKC8PDwDhchhBDuorhcS35xLTMnD+6W72d1TH/q1Kl8/fXX1NXVYTKZ2Lt3L+PGjePLL78kMzOTF198kdGjR/OXv/yFyMhIfHx8yM7OBiAzM5OkpCSbFyGEEM6mVqvnp/wK/vjPLFZvOU5xWffcjGb1SD82NpYFCxaQmpqKwWBg0qRJzJ0796rrr1ixgsWLF6PVaomJiSEtLa1LGyyEEM7MYDTxyc6TfJVdDECUJoDH5o4hemBItwxpteuO3JSUFFJSUtp8b+LEiUycONHyOjo6mnXr1nVN64QQwoXU6ZpZ9dlRck5XA9ArwJv/JzWeAF+vbmuDw03DIIQQrkZRFLb9UMT6r0+hb245CTzrxgGkTBnS7W2RaRiEEKITdI0GHnt1D03N1551QFEU3v08l4925BMR7AeAfw9PuwQ+yJG+EEJ0SnlNIw16I2XVjfTv3fb19fuOnmfjN6cprWpg6rhIfjltGJv3FzJ6cGg3t/ZnEvpCCHEdzIpCaVUDPQO86eHdEqkNTQZWfZbDoZOV+Pp4MuemQdz1i4GoVCrumjTIru2V0BdCiOvQ2GRk2ftZDOoTxPP/lcDJklrezDxCVZ2eSaMjSL11OL4+jhO1jtMSIYRwQmU1jQCcOlfHnz/+iaOnqwj08+YPv4xj1MAQO7fuShL6QghxHUrKdZb/HzlVxYyJ/ZlxQ3+C/L3t2Kqrk9AXQohO0F+Yf+fiTVYTR/Um5eYhhPbsYc9mWSWhL4QQHVSna271uleAN2m3j3CosfurcfwWCiGEAzl+ppqQC+P4D82KZuSAYMJ6+tq5Ve0noS+EEO3QqDeybtdJdh4o4RUV9IsIImJsX3s3q8Mk9IUQwopjhdW883kOVXV6bpvQj0HfBqFSq2iyd8M6QUJfCCGuQlEUVm/NY9eBEjS9evDsvPEMjeyJ6m8deziUI5HQF0KIy5gVhWOF1Wz4+hT5xbVMjY8kZcoQpzhRa43zVyCEEF2oUW/k7U05HDhRQZCfF7+eGc1NY/t0+NGvjkpCXwghaBnK2Xf0PJ/sOkm9zsDcmwczbVyUSxzdX8q1qhFCiE6o1TXz4bY8fjhWxpC+QTx6zxiGRva0d7Nsol2hv2PHDl5//XUaGxuZNGkSixcv5uOPP2b16tWoVCpGjx7N0qVL8fb2Jjc3l0WLFqHT6UhISGDp0qV4esrfFiGE4zErCjt/LGHTvtPU6wzcPbllNky12jWGctpi9SEqRUVFvPDCC6xcuZKNGzeSk5PDP//5T9555x0++ugjNm7ciNls5sMPPwQgIyODJUuWsGXLFhRFYe3atTYvQgghOupMaT1//vgn1mzLI7yXLxkPxHH35EEuHfjQjiP9bdu2MWvWLCIiIgB49dVXMRqNDB06lICAAACGDx/O2bNnKSkpoampibi4OACSk5N57bXXSE1NtV0FQgjRQTt/LObjHfkAzLt9BFPi+rrMiVprrIZ+YWEhXl5eLFy4kHPnzjFlyhTS09OJjIwEoKqqijVr1rB8+XLKysrQaDSWbTUaDaWlpR1qUGhoQAdL+JlG0/bTa1xZq5q9PK5c5oJcvb62XLNmF+13W9VTXFbP6q159Azw5i9PTSGsVyemULDRPu+OPrQa+iaTiaysLFavXo2fnx+PPPII69evJzk5mdLSUhYsWMDcuXOZOHEi2dnZrf5aKorS4b+elZVazGalw4VoNIGUl9d3eDtndnnNPS/M+lfrwvtB+vlKrtjvXdnPRpOZr7KKyTpeRnlNI/UNBrw91Sx96AYUg7FT38cW+7yzNavVqg4dLFsN/bCwMBITEwkJaXkYwPTp0zl06BCxsbEsWLCAefPmMX/+fAAiIiIoLy+3bFtRUUF4eHhHaxBCiC6z99A51u7Mt7weP1zDuBEah53v3tashv7UqVN5+umnqaurw9/fn71795KYmMhvfvMb0tPTmTNnjmXdyMhIfHx8yM7OZvz48WRmZpKUlGTL9gshxDWdKK4B4K9PTMZDrcKvh5d9G2RnVkP/4hF9amoqBoOBSZMmYTKZqKio4L333uO9994DYNq0aTz55JOsWLGCxYsXo9VqiYmJIS0tzeZFCCHc27WGkk+W1DJ+uIZAP/c8sr9cuy6gT0lJISUlpdWyi0M6l4uOjmbdunXX3zIhhGiH7dnFrNmWR2hQD8YMDuGB6cMoOFtHo95EfWMz5TVNTI2PsnczHYbcNSWEcFoVtY2s2ZYHQGVdE7t+Osuun862WsfH24O4YWH2aJ5DktAXQjitY4U1ANw0tg/JSYN5a+NRVCoVukYDsycPIiTIh5CgHgTJ0I6FhL4Qwiktff8HCs+3XOJ4/7Rh+PXw5P9JHWfnVjk+q9MwCCGEo2nUGy2BD+Dr42HH1jgXCX0hhNOpqmv9oEJ3mUKhK8jwjhDC4TQbTJSUa/H0VFNR00Sz0URwoA8VNS1hv+/oeTu30HlJ6AshHM6qDYfZ8l3hNdfx9FBjNJmJGypX5nSEhL4QwqEYjGZ2ZhcDMDSqJ5Fh/hSXaTl5to7f3jWKfpoAPD3VBAf4oKCgQoZ2OkJCXwjhUA6drKDZYOKp+2IZMzgUgLqGZo4WVHHjqN4yfn+dJPSFEA7l2yPnCQ70YdTAYMuyID9vEkdH2LFVrkNCXwjhEI4UVLLjxxIOF1QyO2kIHmq5uNAWJPSFEHbVbDDxya6TbM8uxtfHg3HDNSRPGYqhqdneTXNJEvpCCLspPF/Pqs+Ocq6ygekJUdw7ZQhenh70CvShXELfJiT0hRDdzmxW2PL9Gf6zp4AAPy/++/5YRg8KtXez3IKEvhCiW1XWNvH2phyOF9UwfriG/5oZTYCvez/YpDtJ6Ashus2+o+f5YOtxzAo8NCuayWP6yCWY3UxCXwhhc1V1TXy6+yT7jpYyPKon8+8cRXgvX3s3yy21K/R37NjB66+/TmNjI5MmTWLx4sV8++23LF++HL1ez8yZM3nqqacAyM3NZdGiReh0OhISEli6dCmenvK3RQh3ZDSZ+c+eAnZkF9NsNDMlPpLU6cPw9JDLMe3F6p4vKirihRdeYOXKlWzcuJGcnBx2797Nc889x8qVK/niiy84cuQIu3fvBiAjI4MlS5awZcsWFEVh7dq1Ni9CCOF46hqa+esnB9m8/wwJ0eEsf/hG0m4fIYFvZ1b3/rZt25g1axYRERF4eXnx6quv4uvry4ABA+jXrx+enp7cddddbN68mZKSEpqamoiLiwMgOTmZzZs327oGIYSDOZBXzvNv7+d4UQ0PzYpmwZ2j6B3sZ+9mCdoxvFNYWIiXlxcLFy7k3LlzTJkyhWHDhqHRaCzrhIeHU1paSllZWavlGo2G0tJS27RcCOFwGpqM/Ht7Ht8cPk//8AAyHognShNg72aJS1gNfZPJRFZWFqtXr8bPz49HHnmEHj16tDrjrigKKpUKs9nc5vKOCA3t/A+IRhPY6W2dVauavTyuXOaCXL2+tlyzZgfod73BxKa9BWzYfZI6nZ77pw/n/ltH4OXZ+aEch+5nG+3z7qjZauiHhYWRmJhISEgIANOnT2fz5s14ePz8eLLy8nLCw8OJiIigvLzcsryiooLw8PAONaiyUovZrHRoG2jZWeXl9dZXdCGX19zTYAKg1oX3g/Tzlezd77VaPa99ephT5+qIGRTC43PHMKhPEDXVuk5/TUfvZ1vs887WrFarOnSwbPXP8NSpU/n666+pq6vDZDKxd+9eZsyYwalTpygsLMRkMrFp0yaSkpKIjIzEx8eH7OxsADIzM0lKSupwEUIIx1ena2blhiM8/fd9lJRreSx5DP9zfxyD+gTZu2niGqwe6cfGxrJgwQJSU1MxGAxMmjSJBx54gMGDB/P444+j1+u5+eabmTFjBgArVqxg8eLFaLVaYmJiSEtLs3kRQojudfxMNX/feBRdo5EbR/Vm5o396RPqb+9miXZo1wX0KSkppKSktFqWmJjIxo0br1g3OjqadevWdU3rhBAORW8wsX5PAV9lFaPp1YOn7o2lf28HHnsXV5C7poQQ7XIwv4KPduRTWtXAzXF9uW/qUHx9JEKcjfSYEOKa9M0m/rnlGN8dLSW8ly8Zv4xj5MAQezdLdJKEvhDiqvJLanl7Uw5l1Y30DvFj2fwJeHl6WN9QOCwJfSHEFRqajHy5v5AvviskJNCHjAfiGTkg2PqGwuFJ6AshLExmM1t/KGLD3lMYjGYmj+nDA9OHydi9C5GeFEIAUFSm5b0vcjl9vp7YIaHcdkN/Obp3QRL6Qrg5g9HMpm9P88V3hfj38OSROaNJGKGRh5u4KAl9IdzYyZJa3vvyGGcrdCTGRPDA9GHy6EIXJ6EvhBvSN5v4z54CvsoqIjjIh/R7Yxk7RB5M7g4k9IVwMzmnq3j/y2NU1DYxdVwkKTcPkRO1bkR6Wgg30dBk4OMd+ew9dI7ewb48nRrPiP5yotbdSOgL4QYOnazgvS+PUadrZubE/tw9eRDeXnKTlTuS0BfChembTXz27Wm+3F9IZFgAT8wdK1MfuzkJfSFc1A/Hyvho+wmq6/VMGhPBg7eOwMdbju7dnYS+EC7GaDKzYe8pvviukP69A3h4dgzD+/Wyd7OEg5DQF8KFHCmo5MOvTnC+qoGk2D7Mu30EHurOP6dWuB4JfSFcgMlkZvXW4+w+cBa/Hp78fs5oEqI79nxq4R4k9IVwcnW6ZkqrG9h94Cw3x/flnpsGy1214qraFfrz5s2jqqoKT8+W1ZctW0Z9fT0vv/wyZrOZUaNG8eKLL+Lt7U1ubi6LFi1Cp9ORkJDA0qVLLdsJIbpGU7MRD7WatTvyuaVSRw9vT5b95gb6hslzasW1WU1jRVE4ffo0O3fubBXeN998M++++y5DhgzhiSeeIDMzk3vvvZeMjAxefPFF4uLieO6551i7di2pqak2LUIId3L0VBV/+vgny+tbgN7Bvugl8EU7WD3DU1BQAMD8+fOZPXs2H3zwAQAmkwmtVovJZEKv1+Pj40NJSQlNTU3ExcUBkJyczObNm23XeiHczIniGv72n0OW11Pi+jK8Xy96yDQKop2s/qTU1dWRmJjI888/j8FgIC0tjUGDBvG///u/zJs3j4CAAKKiopgxYwZHjx5Fo9FYttVoNJSWlnaoQaGhAR2vwvL9Aju9rbNqVfOFOyxdfT+4en1t8fTxYntWEeu256Hp5ctLj95Er0Cfljffafk1drX94tD12Oh3rTtqthr68fHxxMfHW16npKSwadMmDhw4wKZNm4iKimL58uUsX76cO++8s9Uc3IqidHhO7spKLWaz0qFtoGVnlZfXd3g7Z3Z5zT0NJgBqXXg/uGM/q709+Z+/7KGyrom+Yf6kp8RiaGqmvKkZcM1+d/R+tsU+72zNarWqQwfLVod3srKy2Ldvn+W1oijs37+f4cOH079/f9RqNffddx/ff/89ERERlJeXW9atqKggPFwuGxOis3RNBl5YtQ9dk4HFaQm8uGAioT172LtZwolZDf2LV+no9Xq0Wi3r16/nT3/6E4cOHaKiogKA7du3M2bMGCIjI/Hx8SE7OxuAzMxMkpKSbFuBEC6orLqB/+wp4H9e/4aSch2PJ49hcF+ZM0dcP6vDO1OnTuXgwYPMmTMHs9lMamoq8fHxPPnkk6SlpeHh4cGAAQNYtmwZACtWrGDx4sVotVpiYmJIS0uzeRFCuAqjycynu0+y5fsiy7Jn0iYwvK8Dj28Lp9KuU/7p6emkp6e3WnbPPfdwzz33XLFudHQ069at65LGCeFOThTX8PfMoy0TpI2O4KbYvqjVKhJj+zr0+LZwLnKdl3A6GSu/xctTzf/97kZ7N+W6KYrCjh9LGDMklB0/lqBvNvHoPWMYNzxMHkwubEJCXzidyromezehS5jMZrKPl7NmWx5sg/HDNQQH+jB+hMb6xkJ0koS+EHbQ1Gzkb58eJrew2rLMZFbw8JCje2FbEvpCdCNFUdj07WnW7z11xXtGk1mmQRY2J6EvRDf6x6Ycvjva9l3qRpMZTznSFzYmhxVCdBNFUdh/tJQ+oX6kTBlyxftGs4Knh/xKCtuSnzDhFmp1zShKx6f3uF4Go5mNX59C12TAaFJQgMSYCLw9r/zVM5nMMqYvbE5CX7i8c5U6nvrb13yVXdyt3ze/uJaHV+xiw9eneG3dIZqNLfO1+Hh54O115QPKm41mPGVMX9iY/IQJl1de03KJ5+GTld36fTd++/PJ2hPFtTQbzAB4e6nxamMYp0lvkjF9YXNyIlc4FVMnZmBVX8hRczcO79Tqmsk5Vd1qWWlVAwDeXh5th36zUcb0hc3JT5hwKoYLQyQdobqQ+p2ZstuabT8U8eV3hVcs33/0/BV/ZA4VtHzS8Pb0wNvryl+9Br0RD7Uc6QvbkiN94VQMRnOHt7kYo7Y40P/39hMAFJytI7RnD5Ji+9I3zJ9vjpxnUJ9ATp37ec6cQxeGl3y81G2Gu6KAhxzpCxuTnzDhVDoT+kZTS9q3d3jHrCiWoZirqaht5PN9py2vi8q1bMsqYusPZzhTWk9RmZZfjO5jeT8yzJ+zFTqgZXhHfZUjehnTF7YmoS+cSudCv2Wb9h7p7/yxhGdXfcepc3VAy7CQyWxmy/dnqKhp5LNvT/P829/z6e4C+vcO4KWHb+SlhxOJDAugTmfg2yPn8VCrmDiqt+VrxgwKsfy/raGdi2RMX9iaDO8Ip9KZMf2LoW9WFJqajXx96BzTxkVd9Wj7ZEktAP/4LIfFaeP526eHOV5UA8BXWUVU1ukBeOnhGwkP9rNsF+jnRVV9E7mF1cQODSPA18vyXvywMLb+0DJHvqeHGj1t1yHX6Qtbk8MK4VSu70hf4d3Pc/nwqxOcKK6xvG82KzQ0GTh1ro7C8/U0NbcE8vmqBv615bgl8AFL4D8wfVirwAcI8vfmTKkWvcHEpNERrd7r3zuQtNtHABAS6EPwxYeaX0au0xe2Jkf6wmmYzGZOna21vK6qa2Ltznx+PTOaHt5X/1G2jOmbIet4+YX/twzZVNfr+WBrnuUk6+W+zy1rc7lPGzdXBV44slerVMQOC2v1nqeHminxkUyJjwTAr4cXy393I8+u+q7VerU6/VXrEKIrtCv0582bR1VVFZ6eLasvW7YMs9nM8uXL0el0jBgxgpdeeglvb29yc3NZtGgROp2OhIQEli5datlOiOvxn90FfLn/jOX1p7tP8n1uGbFDwki87Mj6Uhc/HTRfMjSkN5rZnlXMf/YUtHl37KUG9w1iaGRPJo7qzV8/OUhdg6HNaRQC/VpCf9SgYNSXPQClrRO0vUN+/qTw+zmjWbnhCGXVjddsixDXy+pnSUVROH36NJmZmZZ/Q4YM4fHHH2fZsmV8/vnnAJZHJGZkZLBkyRK2bNmCoiisXbvWthUIt5F3yTALgKGdV+VcHN65NFCbDSZyCqtpNprRNhroHx4AwE1j+7Ta1tNDze/njOaXtwxjUJ8gy9Os2vpDEejv3dKeNu4HsPYUrOH9ejE9IYrU6cOvuZ4Q18vqIXhBQQEA8+fPp6amhvvuuw+NRkNcXBzR0dEALF68GJPJRElJCU1NTcTFxQGQnJzMa6+9Rmpqqu0qEG7r4gRq9Q2Ga653MfQvvZu3qdlEfvHPQ0XxwzU8fHcMESF+zLt9BCeKatjyQxEpU4YQEtTDst7F7G7rCpxA35bQN5k6fkOAp4daAl90C6uhX1dXR2JiIs8//zwGg4G0tDRmz56Nn58fTz31FAUFBYwbN45nnnmGnJwcNJqfH/Wm0WgoLW177vCrCQ0N6HgVlu8X2OltnVWrmi8cfbrqfvC67OhauXDbVZPJfM2avX28rlhWWtNEg95oeR0e5s/Y6J+HiPpE9CRpwoArtrt4SWV4WOAV3zOytmU8Xu2hvuI9a33Su3fgNc9LXHN7F+13h67HRvu8O2q2Gvrx8fHEx8dbXqekpLB8+XJCQ0P5+OOP6du3L4sWLWLVqlX84he/aPUxVlGUDj/cubJS26nb5TWaQMrL662v6EIur7mnoWXMutZF98Pll2vWXzjpWVBc02bfN+qN+Hh5UNvGM3V/yDnf6rViNLXr5+fip4sGXdMV6+t0Ld9HMZuveO9qX9vHywO9wUR1le6q1+hb+9l2xX539N9nW+zzztasVqs6dLBsdUw/KyuLffv2WV4rikJwcDCxsbH069cPDw8PZs6cyaFDh4iIiKC8vNyybkVFBeHh4R0sQYi2qWh9ANF84QRtSbnuinXNZoVn3trH1h+KaDZceU18RW1Tq+vo/Xpc+Wngaq2AlvlzLjcoIojbb+jH/FkjLcsemhnNtHGRV/1qi+aNZ85Ng+SmLNFtrP6k1dfX8/LLL6PX69Fqtaxfv57XX3+do0ePcu7cOQB27txJTEwMkZGR+Pj4kJ2dDUBmZiZJSUm2rUC4j8s+NF4M8+p6Pbqm1uP6NVo99Q0GcgurqdH+fBmkj5eH5cqb6P69LMuD/Lzb14QLbWjrJiq1WsX904YR1svXsuym2L48eNuIq369qPAAZk8a1K7vLURXsDq8M3XqVA4ePMicOXMwm82kpqaSkJDAsmXLWLhwIXq9npEjR/L0008DsGLFChYvXoxWqyUmJoa0tDSbFyHcU1OziUA/L+obDBSXaRnRP9jyXtWFm6hOnasjPNgXL081BqOZQD8vKmpbhmGiBwRbrtvvFdC+0O8T6k9FbVObUyML4QzadQF9eno66enprZZNmTKFKVOmXLFudHS05fJNIWypul7P2CGhHDpZSXG5jhH9gzGZzahQUXlhHF/baEDbaGBoVE/yi2sJ9PNiWFRPfH08SYrtywdb84CWu2nb4+HZozh+pqbVFT1COBO5a0o4jbYuCdD08sW/hyfF5VoA/r81B+jXO4Cwy0I5ShNwIfS9+e1dMVd8nfaOqfv18CJ+uMb6ikI4KAl94dTMikKkJoDici3aRgP5JbXUaFs+AfTw9rDMoxMc6IOHWmWZKuGiP/wyjvIauQtWuA8JfeE02jrSNxjN9NME8M2Rc5Y7ditqmzh1rg5NL18amgxU1unx9fZg6rhIRl4y7g8wamBIG19VCNclZ6OEUzMazUSG+9PUbGLf0Z+vvT91rp7wYF98Ltzw5OPtQer04TI0I9yehL5wagajmShNy40p2cfLGdw3iOBAH0KCfEhOGmx5LKHvNe52FcKdyG+CcAp1umbyLpkr5yKDyUxkmL/l9aiBwcyZPBhULVMcXwx9H+9rz6QphLuQ0BdO4ce88jaXTx7TB18fT8J7+aI3mrhlfL9WT8SyhL6V6ZOFcBcS+sI5tHEWd2hUTxKiW6b5WPqbG/D0UOFx2ZOnLoZ+Z+ZzEsIVyZi+cApKG6HteckRvY+XxxWBDxAzOBSAXld5PKEQ7kaO9IVT0DX9PA3ypNERHDldxYSRva1ud0fiACaO6k34JfPhCOHOJPSFU6jVNVv+/5s7R7V7O7VKJYEvxCUk9IVDa2gy8p89J9n5YwkAf3w40c4tEsK5SegLh6QoCj8cK+Pf209Qp2vmlvFR3JM0mP5RwQ79cA0hHJ2EvnAYeoOJz/cVYjYrnCmr50hBFQN6B/LE3LEM6hNk7+YJ4RIk9IVDMCsKb3+WQ3ZeOR5qFZ6eah64ZRjTxke2eVWOEKJzJPSFQ1i36yTZeeX8ctpQpif0w6wo8ghBIWxAQl/YldFkZtO3p9m8/wxTx0Vy64R+qFQq1G3OqSmEuF4S+sJuCs/X8+4XuRSVaUmM6U3q9GGoVBL2QthSu0J/3rx5VFVV4enZsvqyZcuIjY0F4IMPPmDLli2sXr0agNzcXBYtWoROpyMhIYGlS5dathMCWh5onvnNKbbsLyLQz4vHkscwTqY8FqJbWE1jRVE4ffo0O3fuvCK88/PzWbVqFQMGDLAsy8jI4MUXXyQuLo7nnnuOtWvXkpqa2vUtF07p9Pk63tqYQ2lVAzeN7cN904bi38PL+oZCiC5h9UxZQUEBAPPnz2f27Nl88MEHADQ3N7NkyRKeeOIJy7olJSU0NTURFxcHQHJyMps3b7ZBs4Uz2nmghGXvZ1Fa1UDajBE8NGukBL4Q3czqkX5dXR2JiYk8//zzGAwG0tLSGDRoEHv27GHu3LlERUVZ1i0rK0Oj+fljukajobS0tEMNCg0N6ND6l9JoAju9rbNqVfOF6YMdbT9U1zfx1vrDfHPwLAB/+NV4bh4XZWWrq3O0+rrDNWt20H6/Xg5dj432eXfUbDX04+PjiY+Pt7xOSUnhlVdeoX///jz77LPs37/f8p7ZbG51Ik5RlA6fmKus1HZqGlyNJtDt7tS8vOaehpaHgNc6yH7QNRnYdaCEzfvPoDeYmTymD5PGRDCiX89O95X085Ucrd+7gqP3sy32eWdrVqtVHTpYthr6WVlZGAwGEhNb5jxRFIWRI0fy008/cffdd9PQ0EBFRQXp6elkZGRQXv7zwy4qKioIDw/vcBHC+eWcruKdz3OprtczNKonD82Mpk+ov/UNhRA2ZTX06+vree211/joo48wGAysX7+epUuXsnz5cgD279/P66+/zl/+8hcAfHx8yM7OZvz48WRmZpKUlGTTAoRjMSsK6/cU8Pm+QiJC/HjuwfEMiQySSzGFcBBWQ3/q1KkcPHiQOXPmYDabSU1NbTXcc7kVK1awePFitFotMTExpKWldWmDhWMyGE0Untey48divssp5aaxfUi9dbg8plAIB9OuC+jT09NJT09v872JEycyceJEy+vo6GjWrVvXJY0TzmF/Tin/2nKMRn3LOOfcmwcz68YBcnQvhAOSu6ZEp+kNJv791Qn2HDzLoD5B3Dohiv7hgfQNk7F7IRyVhL7olHOVOlZuOEJJuY5ZNw5gzk2DZII0IZyAhL7osLyiGv726SHUahX/fV8soy88fFwI4fgk9EW7lVY18OFXJzhcUEloUA8yUuPl+bNCOBkJfdEu1fV6nl31HQC3TejHrBsHEOTvbedWCSE6SkJfXFVlbROZX5+iUW8kr7gGgF+MjuCXtwyzb8OEEJ0moS/a1Kg38vfMI5w+X0/vED/6hQeQFNuXMTJ+L4RTk9AXVzh0soJ/bTlOdZ2eBXeOInF0hL2bJIToIhL6wqKqrolPd59k39FS+ob581zaaIb07WnvZgkhupCEvgDg090n2bz/DACzJw3kjsSBeHnKdfdCuBoJfTdnMJpZv7eAzfvPMCE6nHunDiGsp1yGKYSrktB3Y0VlWv7xWQ7F5VqSYvvy4G3D5a5aIVychL4bUhSFrT8UsW7XSfx9vXgyZSyxQ8Ps3SwhRDeQ0HcjZrNCwdk6vtxfyIETFcQPC+PXM6MJ9JObrIRwFxL6bqK0qoE3M49wplQLwC9vGcatCVEy/bEQbkZC38UpisI3h8+zZlseJrOZ4EAfHr1nDIP7Btm7aUIIO5DQd2GlVQ2s31vA97lljOjXi9/eNYqQoB72bpYQwo7aFfrz5s2jqqoKT8+W1ZctW8axY8dYvXo1KpWK0aNHs3TpUry9vcnNzWXRokXodDoSEhJYunSpZTvRffYcPMv7Xx5DrVKRnNTyJCu1WoZyhHB3Vq/PUxSF06dPk5mZafkXFBTEO++8w0cffcTGjRsxm818+OGHAGRkZLBkyRK2bNmCoiisXbvW5kWIn5lMZt7aeJT3vzyGfw9PFv/XeO78xUAJfCEE0I7QLygoAGD+/PnMnj2bDz74AG9vb1544QUCAgJQqVQMHz6cs2fPUlJSQlNTE3FxcQAkJyezefNmmxYgWiiKQq1Wz6lzdWQfL2P2pIH8+bHJDIyQsXshxM+sjrvU1dWRmJjI888/j8FgIC0tjUGDBjFp0iQAqqqqWLNmDcuXL6esrAyNRmPZVqPRUFpa2qEGhYYGdLCEn2k0gZ3e1llpNIEUl9XzxrpDpFY14N/Di9f+Zyr9ervuvnDXfr4qLw/r6zghh67HRvu8O2q2Gvrx8fHEx8dbXqekpLB7924mTZpEaWkpCxYsYO7cuUycOJHs7OxWlwAqitLhSwIrK7WYzUqHtoGWnVVeXt/h7ZxZr2A//vXZUTbtO423pwcRIX70DPChVo3L7gt37GdrNfc0mACodaH94uj9bIt93tma1WpVhw6WrYZ+VlYWBoOBxMREoCXIPT09OXnyJAsWLGDevHnMnz8fgIiICMrLyy3bVlRUEB4e3tEahBUms5lT5+r5+INsThbXcsPIcB64ZRg9d/vYu2lCCAdndUy/vr6el19+Gb1ej1arZf369UybNo3f/OY3PPnkk5bAB4iMjMTHx4fs7GwAMjMzSUpKsl3r3VBVXRMv/jOb/1udTUVNIwvvjmHh3aPpGSCBL4SwzuqR/tSpUzl48CBz5szBbDaTmprKkSNHqKio4L333uO9994DYNq0aTz55JOsWLGCxYsXo9VqiYmJIS0tzeZFuIv8klpe/89hmpqN3DS2D79NHouxyWDvZgkhnEi7LqBPT08nPT291bJf//rXba4bHR3NunXrrrdd4hK6JgPbfijii+8KCQ70IeOBCUSG+RMc2INyCX0hRAfIXVMOTFEUvjtaykc7TlDfYGDkgGAemTOaAF8vezdNCOGkJPQd1PmqBlZvOU5uYTWD+gTxRMpYBvcJkgnShBDXRULfwZgVhS+/KyTz61N4eXow77bh3BwXKXfUCiG6hIS+A6mu1/PhV3lkHy8nYYSGX906XK7KEUJ0KQl9B2BWFDL3nmLTvtMA3D9tKLdN6CdDOUKILiehb2fF5Vo+3XWSgycrmTQ6gjt+MZCIED97N0sI4aIk9O2kocnIp3tOsvPHEjzUKh68bThT4yPl6F4IYVMS+nbwU34Fq7ccp6ZeT9zQMNJmjKCXjN0LIbqBhH430jYa+HBbHt/llBKp8eex5DEM6iNTHwshuo+Efjc5ebaWleuPUKdr5u7Jg7gjcQCeHlanPhJCiC4loW9j9Q3N/JhXzpptefTw9uTh2TEkRMvMo0II+5DQt6EDeeW8/p/DKEDMoBAenh0jUygIIexKQt8Gisu1fLA1j7yiGny8PHjwtuEkxkTIXbVCCLuT0O9CRpOZL/ef4bNvTqFSqQjy8+LJe2PlZK0QwmFI6HeR4jIt73yeS2FpPROiw/nVbcMJ8vO2d7OEEKIVCf3rZDKb2fFjCZ/uPomPlwe/nzNaTtQKIRyWhH4bck5X0Ww0Ezc0zOq6qzbm8MOxMqI0AfzP/bEyQZoQwqFJ6F+ivqGZjV+fZvuPxQC88VQSvj7X3kUHTpQzaUwED80aiVqmUBBCOLh2hf68efOoqqrC07Nl9WXLlqHT6Vi+fDl6vZ6ZM2fy1FNPAZCbm8uiRYvQ6XQkJCSwdOlSy3aOyqwo7PnpLJv2naa6Tk9woA/V9XoKz9cTPSD4qtsZjCaMJoWIED8JfCGEU7B6S6iiKJw+fZrMzEzLvxEjRvDcc8+xcuVKvvjiC44cOcLu3bsByMjIYMmSJWzZsgVFUVi7dq3Ni7geRpOZD7fl8a8txzEYzSxKS+B/H5oAwKnzddfctkFvArD6aUAIIRyF1bQqKCgAYP78+dTU1HDfffcxfPhwBgwYQL9+/QC466672Lx5M0OHDqWpqYm4uDgAkpOTee2110hNTbVdBdfhWGE1a7blUVKhY+Ko3qTdPsIS4GE9e3Dq7LVDv1FvBCT0hRDOw2pa1dXVkZiYyPPPP4/BYCAtLY0FCxag0Wgs64SHh1NaWkpZWVmr5RqNhtLS0g41KDQ0oEPrX0qjCWzXeofzK1i/O58fckoJD/Fj0UM3MDEmotW0xtEDQ8g7U33Nr1nd2BL6EeGB7f7eXa3V9/XyuHKZC3L1+tpyzZpdtN8duh4b7fPuqNlq6MfHxxMfH295nZKSwmuvvcb48eMtyxRFQaVSYTabWwXnxeUdUVmpxWxWOrQNtOys8vJ6q+vlnK7iL58cxGhSmBofyf3ThuLt5UFFhbbVen1D/Pj64FlOnq4kyL/t6+3PlrZ8EmhubG7X9+5ql9fc09Ay3FRrh7Z0l/b2syuxVrMr9ruj97Mt9nlna1arVR06WLYa+llZWRgMBhITE4GWII+MjKS8vNyyTnl5OeHh4URERLRaXlFRQXi441yzfqa0nj9/fJCIUD+e+dW4a86DM6hPy1/cU+fqiG3j0s1mg4kNe1qGvmR4RwjhLKyeyK2vr+fll19Gr9ej1WpZv349//3f/82pU6coLCzEZDKxadMmkpKSiIyMxMfHh+zsbAAyMzNJSkqyeRHtdbigErOi8ETKWKsTnw2ICESlagn9S5kVhR+OlfH/rs7m5Nk6BvUJok+oPN5QCOEcrB6iTp06lYMHDzJnzhzMZjOpqanEx8fz0ksv8fjjj6PX67n55puZMWMGACtWrGDx4sVotVpiYmJIS0uzeRHtVXC2jt4hfoT38rW6bg9vT/qG+nP6/M8ft8pqGvl4+wkOnKjAQ63iN3eM5BejI+QRh0IIp9GucYn09HTS09NbLUtMTGTjxo1XrBsdHc26deu6pHFdSVEUCs7WMWpgSLu3GdgnkIP5lS2XrZ6v588f/4TRpDB5TB/umzZUpkkWQjgdtxmMrqxrolbXzJDI9s94ObhPEN8cPs9f1x3i8MmWE7rP/9c4woNlOEcI4ZzcJvQLLlxzP7hv+0N/4IUpkQ8XVDIrcQDTE/rR8ypX8gghhDNwq9D38lQTpWn/pU39ewcwdVwksUNCGTvE+uRrQgjh6Nwi9A1GEz8cK2NARGCHHkbuoVYz77YRNmyZEEJ0L5cP/bMVOtZsy6O6Xs+MG/rbuzlCCGFXLhv6jXoja3fms/uns3h6qHloVjQ3je1r72YJIYRduWTo556u4t0vjlFV18RtE/oxK3GAPLpQCCFwsdDXN5v4ZFc+O34soXewL88+OJ6hUT3t3SwhhHAYLhP6Rwsq+dOaLMprmpieEMXcm4fgc2EmPCGEEC1cIvRPltSyfM2PhAT68HRqPCP6X/1pV0II4c5cIvT9fb2YkzSEW+L7yoyXQghxDe2/aN2BRYT48dBdMRL4QghhhUuEvhBCiPaR0BdCCDcioS+EEG5EQl8IIdyIhL4QQrgRCX0hhHAjEvpCCOFGHO7CdrW68w8Zv55tnVWrmiMirlzmgly9vrZcs2YX7XeHrsdG+7wzX6+j26gURVE6/F2EEEI4JRneEUIINyKhL4QQbkRCXwgh3IiEvhBCuBEJfSGEcCMS+kII4UYk9IUQwo1I6AshhBuR0BdCCDcioS+EEG7E7UPfHWehkJrdg9TsHjpas8NNuGZL3377LSdOnECtVnPHHXfQs2dPPDw8UBQFlcqBJ3e6DlKz1Cw1u46uqNltjvSzsrL4wx/+QEBAADt27OCNN97gs88+w2g0olKpXPIIQWqWmqVm19FVNbvNLJvvvfceRqOR3/72t+h0Oj799FMKCgpISEhg1qxZqNWu9/dPapaapWbX0VU1u96euYrevXvz/fffU1RUhL+/P/feey8DBw7kwIED1NXV2bt5NiE1S81Ss+voqppdOvRPnjzJiRMnqK6uZsKECQwaNIh9+/ZRXl6Or68v9957Lzk5OXz55Zf2bmqXyc/P5/Dhw1RWVjJt2jT69OnDvn37qKiocNmapZ+ln121Zlv0s8uG/q5du/j1r3/Nu+++y4MPPsjBgwcJDw/n8OHD7Nq1izNnzuDv78+UKVNcZvxvz549PProo3z44YfceeedmEwmJk+ezA8//MDOnTtdsmbpZ+ln6eeO1exyV+8oioJWq+WTTz7hz3/+MxMmTGDjxo1s3ryZxMRE1Go1J0+eZOPGjYwdO5ZNmzbx7rvv2rvZ162srIw33niDP/7xj9xwww089dRTHDhwgHHjxqHT6cjLy3OpmqWfpZ+lnztXs8uFvkqlIjAwkJ49e1JUVMSECROYPXs2/v7+fPHFF9x5552kpKSQlZVFVVUVq1evpn///vZu9nULCQkhKiqKPn36cP78eTZv3ozBYODEiRM88sgj/OpXvyI/P5+KigqXqFn6WfpZ+rmT/ay4ELPZrJjNZsVoNCqrV69WXnnlFeXMmTOW99evX6/ccsstSmVlpR1b2bXMZrOiKIpSW1ur7NixQ1EURTlx4oTyySefKIqiKFu2bFHuvPPOVvvB2Uk/Sz8rivRzZ7nUmL5KpUKlUlFaWsrdd9/N6dOn+fTTTykqKgJgzpw5xMbGUlNTY9+GdqGLN2TU1tYydepUAIYOHUpKSgoAt912G6NGjaK+vt5ubexq0s/SzyD93FkuFfoAx44d44033iAwMJCMjAxOnDjBxx9/zJo1a9iwYQMHDhwgICDA3s3sUseOHeMf//gHOp0OgObmZvLz88nKyuKzzz7j8OHDhIaG2rmVXSsvL48333zTrfo5Ly+Pt99+2+X72WQyYTKZAPf5fb68Zlv+Pjv9zVm7d+9m27ZtaDQa4uPjSUpKQqvVWn4Qzp8/z549e8jJyaGhoYEFCxYwfPhwO7f6+lirubGxkffff5+8vDxqa2t59tlnGTZsmJ1bfX1OnTrFZ599xmOPPYZaraaqqgofHx/8/f0B1+xnazW7Yj/v3r2bzMxMTCYTM2fOZMaMGW7x+3ytmru8n693DMqesrKylFmzZinr169X1q5dq4wbN07597//rSiKohiNRsVgMLRav7Gx0R7N7FLXqtlkMikmk0lRFEVpbm5WFEVR6uvr7dbWrnBxjHPr1q3KLbfcorz99tut+vXSmi9y9n62VvPF9xXFdfpZURRl3759yuzZs5Xt27crX375pZKYmKgcPHhQURTX7GdFuXbNtupnp756p6KigsmTJzNnzhwABg8ezDPPPINKpeL+++8HYO/evWi1WmbOnImPj48dW9s12lPznj17aGhoYMaMGZajQmd36tQpwsLCKC8v58033+T3v/89Hh4eAKjVar7++mvq6+tdpp/h6jUrFybX2rt3LzqdzmX6OT8/n3vvvZdp06YBLdfmV1ZWAlimGHC13+dr1XxxfL+rf5+dekzf39+f4uJiy1jY+PHjeemll3jllVfYtWsXAPX19YwZMwbAJWbea0/NWq2W0aNHA85f88X2h4eHM336dBITEzl79iwrV67EZDKhVqtpaGhwqX5ub82u1M8AdXV1lpO0AE1NTRw9erTVOq7Uz9C+mru6n51uTP+nn36itraWoKAg4uPjefTRRzGbzbz55puWddasWUN1dTWPPfYYJpPJckTorNy5Zh8fH2688UZKS0sJCAjA39+fnTt3sn37dvr06cPDDz+Mp6en1OykfvrpJ2pqaggNDWXMmDHk5ubSr18/AgICePbZZxk3bhz33nsvGzZsYPDgwYwdO9beTb5u9q7ZqY70d+/ezXPPPcfu3bt55513SE9P54033qC+vp6FCxei1+sB0Ol0VFRUADj9bHvuXvOHH37IggUL6N27t+Wj7aRJk7j11lvJz8/nnXfeAXD68HPnmvfs2cNbb73F7373O0aOHElAQABGo5Hq6mr69+/P3r17WbVqFb6+vvZu8nVzhJqd6kj/mWeeISkpiVmzZmE0Glm4cCFGo5H333+fJ598EoPBQM+ePcnNzeWVV15x+isZQGo2Go089thjnD9/ng0bNljWaW5u5vvvv2f48OGEh4fbr7FdRGq+suY//vGP5OXl0djYyPLly93iZ7s7anaqQ8KgoCAMBgMAnp6evP3223h7e/OHP/yBv/71r/z2t79l1qxZ/O1vf3OJHxCQmj09Pfn73/9OZGQkv/vd7yzreHt7M3nyZJcIP5CaL615wYIFADQ0NHDw4EFWrFjh8j/b3VrzdV//Y2OXXra0detWJSEhwXJJk6IoSkNDg7Jw4cJWy5yd1Nx2zY8++qiSlZVlj+bZhNTcds2PPPKIkpOTo1RWViqFhYX2aGaXcrSaHfZIX7ls1CkvL49bb72VJ598koyMDA4fPgyAr68vAQEBLvHgBKn52jX7+vrS2Nhoj2Z2Kan52jX7+/tTVlZGSEiIU0+e5qg1O+x1+g0NDZaTWEVFRfzzn//k2Wef5cEHH0RRFObPn09GRgb19fUcP36cAQMG2LnF109qlpql5paan3jiCTu3+Po5as0OeSJ3165dbNiwgV69ejFmzJhWNyWYzWbUajXbtm3j+PHjVFZWkpqa6vRjflKz1Cw1S83dweFC/8SJEyxYsICXXnqJU6dOUVRURHFxMU8//TRRUVEYjUY8PR32A0qnSM1Ss9TsOhy9Zocb09fr9dx0000kJiaSmprKAw88wMCBA3nllVcoLy/H09OTvXv3smXLFkwmk0s8Gk1qlpqlZqm5uzhM6J85c4a8vDyCgoL47rvv2L59OwD9+/dn7ty59O3b1zLNQF1dHTExMXh4eDj1rdhSs9QsNUvN3V2zQ3yu2rp1K6+++iphYWGMHTuWSZMm8fHHHxMcHMy4ceMYOHAgERER5ObmAnDHHXfYucXXT2qWmqVmqdke7H6k39DQwMaNG/nTn/7E6tWrGTlyJM3NzRw8eJC33nqLrVu3AhAYGEhdXR16vd7pPwJKzVKz1Cw124vdj/RVKhVVVVWcPXuWUaNGMWvWLMLDw/H09CQgIID/+7//46uvvuLHH39k5cqVLjGdqtQsNUvNUrO92D30fX19SUlJYc+ePURFRREdHc348eMpLi4mJyeHd955B09PT3x9fV3m9nOpWWqWmqVme7H78A7AlClTCAoK4vPPP+fYsWN4eHiQnJzM8ePHURSFAQMGOMTO6kpSs9QsNbsOZ6rZIUI/JCSEX/3qV5jNZv71r3/xxRdf8MUXX1BTU0NwcLC9m2cTUrPULDW7Dmeq2aFuzqqqquKbb75h06ZNBAUFMX/+fEaOHGnvZtmU1Cw1uyqp2TFrdqjQv6i5uRmVSoWXl5e9m9JtpGb3IDW7B0eu2SFDXwghhG04xJi+EEKI7iGhL4QQbkRCXwgh3IiEvhBCuBEJfSGEcCMS+kII4UYk9IUQwo38/7htLfb75yRSAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "detector.plot(changepoints)\n", + "plt.xticks(rotation=45)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## BOCP detector" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "ename": "ImportError", + "evalue": "cannot import name '_mul_broadcast_shape' from 'gpytorch.utils.broadcasting' (/Users/pshouche/opt/anaconda3/lib/python3.9/site-packages/gpytorch/utils/broadcasting.py)", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m/var/folders/w6/9kh8n81x3z9097k63m9r40h40000gp/T/ipykernel_3728/2791472790.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mkats\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdetectors\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbocpd\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mBOCPDetector\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mBOCPDModelType\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mTrendChangeParameters\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mgpytorch\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;31m# Initialize the detector\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/ax/__init__.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 31\u001b[0m \u001b[0mTrial\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 32\u001b[0m )\n\u001b[0;32m---> 33\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodelbridge\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mModels\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 34\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mservice\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mOptimizationLoop\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moptimize\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 35\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstorage\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mjson_load\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mjson_save\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/ax/modelbridge/__init__.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;31m# flake8: noqa F401\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodelbridge\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mtransforms\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 9\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodelbridge\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbase\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mModelBridge\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 10\u001b[0m from ax.modelbridge.factory import (\n\u001b[1;32m 11\u001b[0m \u001b[0mModels\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/ax/modelbridge/base.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 36\u001b[0m \u001b[0mTModelPredict\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 37\u001b[0m )\n\u001b[0;32m---> 38\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodelbridge\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransforms\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbase\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mTransform\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 39\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodelbridge\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransforms\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcast\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mCast\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 40\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtypes\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mTConfig\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/ax/modelbridge/transforms/base.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moutcome_constraint\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mObjectiveThreshold\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msearch_space\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mSearchSpace\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 16\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtypes\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mTConfig\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 17\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/ax/models/__init__.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;31m# flake8: noqa F401\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msobol\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mSobolGenerator\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbotorch\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mBotorchModel\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/ax/models/random/sobol.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbase\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mModel\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 12\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel_utils\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mtunable_feature_indices\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 13\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbase\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mRandomModel\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtypes\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mTConfig\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/ax/models/model_utils.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtypes\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mTParamCounter\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexceptions\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcore\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mSearchSpaceExhausted\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 19\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnumpy_base\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mNumpyModel\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 20\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtorch_base\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mTorchModel\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtypes\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mTConfig\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/ax/models/numpy_base.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtypes\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mTCandidateMetadata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mTGenMetadata\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbase\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mModel\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 13\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtypes\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mTConfig\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 14\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/ax/models/types.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptimization_config\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mOptimizationConfig\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mbotorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0macquisition\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mAcquisitionFunction\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 11\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m TConfig = Dict[\n", + "\u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/botorch/__init__.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;31m# LICENSE file in the root directory of this source tree.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m from botorch import (\n\u001b[0m\u001b[1;32m 8\u001b[0m \u001b[0macquisition\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0mexceptions\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/botorch/acquisition/__init__.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;31m# LICENSE file in the root directory of this source tree.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m from botorch.acquisition.acquisition import (\n\u001b[0m\u001b[1;32m 8\u001b[0m \u001b[0mAcquisitionFunction\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0mOneShotAcquisitionFunction\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/botorch/acquisition/acquisition.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 16\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mbotorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexceptions\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mBotorchWarning\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mUnsupportedError\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 18\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mbotorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mModel\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 19\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mbotorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mposteriors\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mposterior\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mPosterior\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtorch\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mTensor\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/botorch/models/__init__.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;31m# LICENSE file in the root directory of this source tree.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m from botorch.models.approximate_gp import (\n\u001b[0m\u001b[1;32m 8\u001b[0m \u001b[0mApproximateGPyTorchModel\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0mSingleTaskVariationalGP\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/botorch/models/approximate_gp.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 33\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 34\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 35\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mbotorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgpytorch\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mGPyTorchModel\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 36\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mbotorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransforms\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minput\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mInputTransform\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 37\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mbotorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransforms\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moutcome\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mOutcomeTransform\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/botorch/models/gpytorch.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 23\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mbotorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0macquisition\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mobjective\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mPosteriorTransform\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 24\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mbotorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexceptions\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0merrors\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mBotorchTensorDimensionError\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mbotorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexceptions\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwarnings\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mBotorchTensorDimensionWarning\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/botorch/acquisition/objective.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 19\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mbotorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mposteriors\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgpytorch\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mGPyTorchPosterior\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mscalarize_posterior\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mbotorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mposteriors\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mposterior\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mPosterior\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 21\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mbotorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mutils\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mapply_constraints\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 22\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtorch\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mTensor\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 23\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnn\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mModule\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/botorch/utils/__init__.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mbotorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mutils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconstraints\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mget_outcome_constraint_transforms\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mbotorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mutils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfeasible_volume\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mestimate_feasible_volume\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mbotorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mutils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mobjective\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mapply_constraints\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mget_objective_weights_transform\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mbotorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mutils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrounding\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mapproximate_round\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/botorch/utils/feasible_volume.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtyping\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mCallable\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mList\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mOptional\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mTuple\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 11\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mbotorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 12\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mbotorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlogging\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0m_get_logger\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/botorch/models/model.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mbotorch\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0msettings\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 22\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mbotorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mutils\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mfantasize\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mfantasize_flag\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 23\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mbotorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mposteriors\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mPosterior\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mPosteriorList\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mbotorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msampling\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msamplers\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mMCSampler\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/opt/anaconda3/lib/python3.9/site-packages/botorch/models/utils.py\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mgpytorch\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0msettings\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mgpt_settings\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mgpytorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodule\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mModule\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 23\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mgpytorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mutils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbroadcasting\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0m_mul_broadcast_shape\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 24\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mtorch\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mTensor\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mImportError\u001b[0m: cannot import name '_mul_broadcast_shape' from 'gpytorch.utils.broadcasting' (/Users/pshouche/opt/anaconda3/lib/python3.9/site-packages/gpytorch/utils/broadcasting.py)" + ] + } + ], + "source": [ + "from kats.detectors.bocpd import BOCPDetector, BOCPDModelType, TrendChangeParameters\n", + "import ax\n", + "import gpytorch\n", + "\n", + "# Initialize the detector\n", + "detector = BOCPDetector(df.loc[:,['time','SOURCE_S']])\n", + "\n", + "\n", + "changepoints = detector.detector(\n", + " model=BOCPDModelType.NORMAL_KNOWN_MODEL # this is the default choice\n", + ")\n", + "\n", + "# Plot the data\n", + "detector.plot(changepoints)\n", + "plt.xticks(rotation=45)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Robust Stat Detector" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:No change points detected!\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEWCAYAAACKSkfIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA5r0lEQVR4nO3deVyVdd7/8dc5bLIrcBAE9w1FBRQrRiM1K7Uyb6SaKLknx5ls2uy+h1+LZrdOv9t+5UwzTdnktM2YTZmNYmYuuVdmQeYGiqwCKqssh+Ws1+8P9CSKssjhbJ/n4+Hj4TnnuuD7Phd8+J7v9b2+l0pRFAUhhBAuQW3rBgghhOg5UvSFEMKFSNEXQggXIkVfCCFciBR9IYRwIVL0hRDChbjbugGXO3++AbO587NIg4P9qKrSWqFF9stVM+vn3gtA/er3bdwa6/D/7cPAz/lc9ThL5o5Rq1X06ePb4e3truibzUqXiv7FfV2NK2bm3DnAibO3kc9ps16DZLYOGd4RQggX0qGiv2vXLpKSkpg5cyYvvfRSq9c+/PBD5s2bZ3mcnZ1NUlISd9xxB4sXL8ZoNHZvi4UQQnRZu0W/uLiYF198kVWrVrFp0yaysrLYu3cvALm5uaxevbrV9mlpaSxdupRt27ahKArr1q2zTsuFEEJ0WrtFf8eOHcyaNYuwsDA8PDx47bXXiImJQa/Xs3TpUp588knLtqWlpTQ3NxMbGwtAUlISW7dutVrjhRBCdE67J3KLiorw8PBg4cKFnD17lilTprBo0SJefvll5s6dS2RkpGXb8vJyNBqN5bFGo6GsrKxTDQoO9uvU9pfSaPy7vK+jcsXMnh5ugBNnbyOf02a9BslsHe0WfZPJREZGBmvWrMHHx4dHH32UTz/9lLNnz/Lcc89x8OBBy7ZmsxmVSmV5rChKq8cdUVWl7dIZbI3Gn4qK+k7v58hcNbPeYAKg1kmzB16Wz1WPs2TuGLVa1anOcrtFPyQkhISEBIKCggCYPn06hw4d4tSpU9xzzz00NjZSWVnJokWLSEtLo6KiwrJvZWUloaGhnQ4hhBCuoqRCS25JLTMnD+mR79fumP7UqVP5+uuvqaurw2QysX//fsaPH8+XX35Jeno6L730EmPGjOHPf/4zEREReHl5kZmZCUB6ejqJiYlWDyGEEI6mVqvjp9xK/vCPDNZsO0lJec9cjNZuTz8mJoYFCxaQkpKCwWBg0qRJzJ0796rbr1y5kiVLlqDVaomOjiY1NbVbGyyEEI7MYDTx6e48vsosASBS48fjc8cSNSioR4a0OnRFbnJyMsnJyW2+duONN3LjjTdaHkdFRbF+/fruaZ0QQjiRugY9qz8/TlbheQB6+3nyf1Li8PP26LE22N0yDEII4WwURWHHD8Vs+LoAnb7lRP2smwaSPGVoj7dFlmEQQoguOJJXxeOv7aNZf+1VBxRF4b0vsvl4Vy5hfXwA8O3lbpOCD9LTF0KILvlsbx6NOiPl55sY0Lft+fUHjp9j0zeFlFU3MnV8BL+cNpytB4sYMyS4h1v7Myn6QghxHcyKQll1I4F+nvTybCmpjc0GVn+exZG8Kry93Jlz82Du/sUgVCoVd08abNP2StEXQojr0NRsZPkHGQwOD+CF/4wnr7SWt9KPUV2nY9KYMFJuG4G3l/2UWvtpiRBCOBDlwsIB5TVNABScreNPn/zE8cJq/H08+f0vYxk9KMiGLWybFH0hhLgOpRUNlv8fK6hmxo0DmHHDAAJ8PW3YqquToi+EEJ2kKAolFS1X0F68yOrG0X1JvmUowYG9bNm0dknRF0KITvouq/Xqwb39PEm9Y6Rdjd1fjf23UAgh7MjJ0+f5ZFcuAA/PimLUwD6EBHrbuFUdJ0VfCCE6oElnZP2ePHYfKiUksBfL5t9A/9Cu3//DVqToCyFEO04UnefdL7KortNx+8T+/MfNQ/DydLN1s7pEir4QQlyFoiis2Z7DnkOlaHr34rl5ExgWEWjrZl0XKfpCCHEZs6Jwoug8G78uILeklqlxESRPGeoQJ2rb4/gJhBCiGzXpjLyzOYtDpyoJ8PHgVzOjuHlceKdv/WqvpOgLIQQtQzkHjp/j0z151DcYmHvLEKaNj3SK3v2lnCuNEEJ0QW2Dno925PDDiXKG9gvgsf8Y6/Bj91fToaK/a9cu3njjDZqampg0aRJLlizhk08+Yc2aNahUKsaMGcOyZcvw9PQkOzubxYsX09DQQHx8PMuWLcPdXf62CCHsj1lR2P1jKZsPFFLfYOCeyS2rYarVzjGU05Z2b6JSXFzMiy++yKpVq9i0aRNZWVn84x//4N133+Xjjz9m06ZNmM1mPvroIwDS0tJYunQp27ZtQ1EU1q1bZ/UQQgjRWafL6vnTJz+xdkcOob29SXsglnsmD3bqgg8d6Onv2LGDWbNmERYWBsBrr72G0Whk2LBh+Pm1XJgwYsQIzpw5Q2lpKc3NzcTGxgKQlJTE66+/TkpKivUSCCFEJ+3+scRyVe28O0YyJbaf05yobU+7Rb+oqAgPDw8WLlzI2bNnmTJlCosWLSIiIgKA6upq1q5dy4oVKygvL0ej0Vj21Wg0lJWVXe1Ltyk4uOtXuGk0bd+9xpm5YmZPj5aLYpw2exv5nDbrNVgrc0l5PWu25xDo58mfn55CSG/7WUKhJ45zu0XfZDKRkZHBmjVr8PHx4dFHH2XDhg0kJSVRVlbGggULmDt3LjfeeCOZmZmt/loqitLpv55VVVrMZqXTQTQafyoq6ju9nyNz1cx6Q8uNpWudNHvgZflc9Th3V2ajycxXGSVknCynoqaJ+kYDnu5qlj18A4rBaDfvbVczq9WqTnWW2y36ISEhJCQkEBTUcjOA6dOnc+TIEWJiYliwYAHz5s1j/vz5AISFhVFRUWHZt7KyktDQ0M5mEEKIbrP/yFnW7c61PJ4wQsP4kRq7Xe/e2tot+lOnTuWZZ56hrq4OX19f9u/fT0JCAr/+9a9ZtGgRc+bMsWwbERGBl5cXmZmZTJgwgfT0dBITE63ZfiGEuKZTJTUA/OXJybipVfj08rBtg2ys3aJ/sUefkpKCwWBg0qRJmEwmKisref/993n//fcBmDZtGk899RQrV65kyZIlaLVaoqOjSU1NtXoIIYRru9ZQcl5pLRNGaPD3cc2e/eU6NIE+OTmZ5OTkVs9dHNK5XFRUFOvXr7/+lgkhRAfszCxh7Y4cggN6MXZIEA9MH07+mTqadCbqm/RU1DQzNS7S1s20G3LVlBDCYVXWNrF2Rw4AVXXN7PnpDHt+OtNqGy9PN2KHh9iieXZJir4QwmGdKKoB4OZx4SQlDuHtTcdRqVQ0NBmYPXkwQQFeBAX0IkCGdiyk6AshHNKyD36g6FzLFMf7pw3Hp5c7/ydlvI1bZf/aXYZBCCHsTZPOaCn4AN5ejnkXK1uQoi+EcDjVdc2tHrvKEgrdQYZ3hBB2R28wUVqhxd1dTWVNM3qjiT7+XlTWtBT7A8fP2biFjkuKvhDC7qzeeJRt3xVdcxt3NzVGk5nYYTIzpzOk6Ash7IrBaGZ3ZgkAwyIDiQjxpaRcS96ZOn5z92j6a/xwd1fTx88LBQUVMrTTGVL0hRB25UheJXqDiafvi2HskGAA6hr1HM+v5qbRfWX8/jpJ0RdC2JVvj52jj78Xowf1sTwX4ONJwpgwG7bKeUjRF0LYhWP5Vez6sZSj+VXMThyKm1omF1qDFH0hhE3pDSY+3ZPHzswSvL3cGD9CQ9KUYRia9bZumlOSoi+EsJmic/Ws/vw4Z6samR4fyb1ThuLh7kZvfy8qpOhbhRR9IUSPM5sVtn1/mn/vy8fPx4P/uj+GMYODbd0slyBFXwjRo6pqm3lncxYni2uYMELDf86Mws/btW9s0pOk6AshesyB4+f4cPtJzAo8PCuKyWPDZQpmD5OiL4Swuuq6Zj7bm8eB42WMiAxk/l2jCe3tbetmuaQOFf1du3bxxhtv0NTUxKRJk1iyZAnffvstK1asQKfTMXPmTJ5++mkAsrOzWbx4MQ0NDcTHx7Ns2TLc3eVvixCuyGgy8+99+ezKLEFvNDMlLoKU6cNxd5PpmLbS7jtfXFzMiy++yKpVq9i0aRNZWVns3buX559/nlWrVrFlyxaOHTvG3r17AUhLS2Pp0qVs27YNRVFYt26d1UMIIexPXaOev3x6mK0HTxMfFcqKR24i9Y6RUvBtrN13f8eOHcyaNYuwsDA8PDx47bXX8Pb2ZuDAgfTv3x93d3fuvvtutm7dSmlpKc3NzcTGxgKQlJTE1q1brZ1BCGFnDuVU8MI7BzlZXMPDs6JYcNdo+vbxsXWzBB0Y3ikqKsLDw4OFCxdy9uxZpkyZwvDhw9FoNJZtQkNDKSsro7y8vNXzGo2GsrIy67RcCGF3GpuN/GtnDt8cPceAUD/SHogjUuNn62aJS7Rb9E0mExkZGaxZswYfHx8effRRevXq1eqMu6IoqFQqzGZzm893RnBw139ANBr/Lu/rqFwxs6dHy12SnDZ7G/nsPavOYGLz/nw27s2jrkHH/dNHcP9tI/Fw7/pQjr1ntoaeyNxu0Q8JCSEhIYGgoCAApk+fztatW3Fz+/n2ZBUVFYSGhhIWFkZFRYXl+crKSkJDQzvVoKoqLWaz0ql9oOXNqqiob39DJ+KqmfUGEwC1Tpo98LJ89n6ca7U6Xv/sKAVn64geHMQTc8cyODyAmvMNXf6a9p7ZGrqaWa1Wdaqz3O6f4alTp/L1119TV1eHyWRi//79zJgxg4KCAoqKijCZTGzevJnExEQiIiLw8vIiMzMTgPT0dBITEzsdQghh/+oa9KzaeIxn/naA0gotjyeN5b/vj2VweICtmyauod2efkxMDAsWLCAlJQWDwcCkSZN44IEHGDJkCE888QQ6nY5bbrmFGTNmALBy5UqWLFmCVqslOjqa1NRUq4cQQvSsk6fP87dNx2loMnLT6L7MvGkA4cG+tm6W6IAOTaBPTk4mOTm51XMJCQls2rTpim2joqJYv35997ROCGFXdAYTG/bl81VGCZrevXj63hgG9HW9sXdHJldNCSE65HBuJR/vyqWsupFbYvtx39RheHtJCXE0csSEENek05v4x7YTfHe8jNDe3qT9MpZRg4Js3SzRRVL0hRBXlVtayzubsyg/30TfIB+Wz5+Ih7tb+zsKuyVFXwhxhcZmI18eLGLLd0UE+XuR9kAcowb2aX9HYfek6AshLExmM9t/KGbj/gIMRjOTx4bzwPThMnbvRORICiEAKC7X8v6WbArP1RMzNJjbbxggvXsnJEVfCBdnMJrZ/G0hW74rwreXO4/OGUP8SI3c3MRJSdEXwoXlldby/pcnOFPZQEJ0GA9MHy63LnRyUvSFcEE6vYl/78vnq4xi+gR4sejeGMYNlRuTuwIp+kK4mKzCaj748gSVtc1MHR9B8i1D5UStC5EjLYSLaGw28MmuXPYfOUvfPt48kxLHyAFyotbVSNEXwgUcyavk/S9PUNegZ+aNA7hn8mDLfQmEa5GiL4QT0+lNfP5tIV8eLCIixI8n546TpY9dnBR9IZzUDyfK+XjnKc7X65g0NoyHbhuJl6f07l2dFH0hnIzRZGbj/gK2fFfEgL5+PDI7mhH9e9u6WcJOSNEXwokcy6/io69Oca66kcSYcObdMRI3ddfvUyucjxR9IZxAXaOe9K8L2HvoDD693PndnDHER3Xu/tTCNUjRF8LBfXP0LB99lYNOb+aWuH78x81D5KpacVUdKvrz5s2juroad/eWzZcvX059fT2vvPIKZrOZ0aNH89JLL+Hp6Ul2djaLFy+moaGB+Ph4li1bZtlPCNE9mvVG3NRq1u3KZeePJQwK82fBXaPpFyL3qRXX1m41VhSFwsJCdu/e3ap433LLLbz33nsMHTqUJ598kvT0dO69917S0tJ46aWXiI2N5fnnn2fdunWkpKRYNYQQruR4QTV//OSnVs89ePsIKfiiQ9o9w5Ofnw/A/PnzmT17Nh9++CEAJpMJrVaLyWRCp9Ph5eVFaWkpzc3NxMbGApCUlMTWrVut13ohXMypkhr++u8jlsdTYvvx9u+nMLRfoA1bJRxJuz39uro6EhISeOGFFzAYDKSmpjJ48GD+53/+h3nz5uHn50dkZCQzZszg+PHjaDQay74ajYaysrJONSg42K/zKSzfz7/L+zoqV8x88UpSp83eRj53Lw92ZhSzfmcOmt7evPzYzfT297JVC3uE0x7fa+iJzO0W/bi4OOLi4iyPk5OT2bx5M4cOHWLz5s1ERkayYsUKVqxYwV133dVqDW5FUTq9JndVlRazWenUPtDyZlVU1Hd6P0fmqpn1BhMAtU6aPfCyfGpPd/77z/uoqmumX4gvi5JjMDTrqWjW27KZVuWqP9tdyaxWqzrVWW53eCcjI4MDBw5YHiuKwsGDBxkxYgQDBgxArVZz33338f333xMWFkZFRYVl28rKSkJDZdqYEF3V0GzgxdUHaGg2sCQ1npcW3EhwYC9bN0s4sHaL/sVZOjqdDq1Wy4YNG/jjH//IkSNHqKysBGDnzp2MHTuWiIgIvLy8yMzMBCA9PZ3ExETrJhDCCRmMLevd//cb31Ba0cATSWMZ0k/WzBHXr93hnalTp3L48GHmzJmD2WwmJSWFuLg4nnrqKVJTU3Fzc2PgwIEsX74cgJUrV7JkyRK0Wi3R0dGkpqZaPYQQzsJoMlNxvonq+mY2f1sIwLOpExnRz/XGt4V1qBRF6fwAuhXJmH7HuWpm/aSbAajduMXGrelep0pq+Fv6cdLe/T2Bvp4Uf5SOWq0iITbSJY+zZO6Yzo7py1VTwuHkl9aiUqkIsnVDuoGiKOz6sZSxQ4PZ9WMpOr2JiBA//Hw88JZF0oQVSNEXDsdgMtu6Cd3CZDaTebKCtTtyYAdMGKGhj78Xfj6yhIKwHin6QthAs97IXz87SnbRectzJrOCm1vnpjgL0VlS9IXoQYqisPnbQjbsL7jiNaPJLMsgC6uToi9ED/r75iy+O972VepGkxl36ekLK5NuhRA9RFEUDh4vIzzYh+QpQ6943WhWcHeTX0lhXfITJlxCbYMeW8xONhjNbPq6gIZmA0aTggIkRIfh6X7lr57JZJYxfWF1UvSF0ztb1cDTf/2arzJLevT75pbU8sjKPWz8uoDX1x9Bb2xZU8fLw82yaNyl9EYz7jKmL6xMfsKE06uoaQbgaF5Vj37fTd/+fLL2VEktekPLVFNPDzUebQzjNOtMMqYvrE5O5AqHYurC1drqC3XU3IPDO7UNerIKzrd6rqy6EWhZGrrNoq83ypi+sDr5CRMOxXBhiKQzVBeqfleW92jPjh+K+fK7oiueP3j83BV/ZI7kt3zS8HR3w9Pjyl+9Rp0RN7X09IV1SU9fOBSDsfNX414so9bo6P9r5ykA8s/UERzYi8SYfvQL8eWbY+cYHO5Pwdmf11I5cmF4yctD3WZxVxRwk56+sDL5CRMOpStF32hqqfYdHd4xK4plKOZqKmub+OJAoeVxcYWWHRnFbP/hNKfL6iku1/KLMeGW1yNCfDlT2QC0DO+or9KjlzF9YW1S9IVD6VrRb9mnoz393T+W8tzq7yg4Wwe0DAuZzGa2fX+aypomPv+2kBfe+Z7P9uYzoK8fLz9yEy8/kkBEiB91DQa+PXYON7WKG0f3tXzN6ME/Lw/X1tDORTKmL6xNhneEQ+nKmP7Fom9WFJr1Rr4+cpZp4yOv2tvOK60F4O+fZ7EkdQJ//ewoJ4trAPgqo5iqOh0ALz9yE6F9fCz7+ft4UF3fTHbReWKGheDn/fPCaXHDQ9j+QzHQUth1tJ1D5ukLa5NuhXAo19fTV3jvi2w++uoUp0pqLK+bzQqNzQYKztZRdK6eZn1LQT5X3cg/t520FHzAUvAfmD68VcEHCPD15HSZFp3BxKQxYa1eG9DXn9Q7RgIQ5O9Fn6vc1Fzm6Qtrk56+cBgms5mCM7VoLjyurmtm3e5cfjUzil6eV/9RtozpmyHjZMWF/7cM2Zyv1/Hh9hzLSdbLfZ9d3ubzXm1cXOV/oWevVqmIGR7S6jV3NzVT4iKYEhcBgE8vD1b89iaeW/1dq+1qG3RXzSFEd+hQ0Z83bx7V1dW4u7dsvnz5csxmMytWrKChoYGRI0fy8ssv4+npSXZ2NosXL6ahoYH4+HiWLVtm2U+I6/Hvvfl8efA0/3vh8Wd78/g+u5yYoSEkXNazvtTFTwf6S4aGdEYzOzNK+Pe+/Davjr3UkH4BDIsI5MbRffnLp4epazS0uYyC/4V18EcP7oNa1XqYpq0TtH2Dfv6k8Ls5Y1i18Rjl55uu2RYhrle7nyUVRaGwsJD09HTLv6FDh/LEE0+wfPlyvvjiCwDWr18PQFpaGkuXLmXbtm0oisK6deusm0C4jJxLhlkADB2clXNxeOfSgqo3mMgqOo/eaEbbZGBAaMvt5m4eF95qX3c3Nb+bM4Zf3jqcweEBqC4U87b+UPj7era0p43rAVSqa4/Vj+jfm+nxkaRMH3HN7YS4Xu12wfPz8wGYP38+NTU13HfffWg0GmJjY4mKigJgyZIlmEwmSktLaW5uJjY2FoCkpCRef/11UlJSrJdAuKyLC6jVNxquud3Fon/p1bzNehO5JbWWx3EjNDxyTzRhQT7Mu2Mkp4pr2PZDMclThhIU0Muy3cXa3dYMHH/vlqJvMnX+ggB3N7UUfNEj2i36dXV1JCQk8MILL2AwGEhNTWX27Nn4+Pjw9NNPk5+fz/jx43n22WfJyspCo9FY9tVoNJSVtb12+NV05ga/l9No/Lu8r6Nypcwel/WulQuXXTWbzNd8Hzy9rrz9YFlNM406o+VxaIgv46J+HiIKDwskceLAK/a7OKUyNMT/iu8ZUdsyHq92U1/xWnvHqW9f/5/PS1zIeek+rnScL5LM1tFu0Y+LiyMuLs7yODk5mRUrVhAcHMwnn3xCv379WLx4MatXr+YXv/hFq4+xiqK0+7H2clVV2i5dLt/VO8k7MlfLfPl0zfoLJz3zS2rafB+adEa8PNyorWu+4rUfss61eqwYTR16Ly9+umhsaL5i+4aGlu+jmM1XvHa1r+3l4YbOYOJ8dYPlD0qgoSVn7YV9XO04g2TuDLVa1anOcrtj+hkZGRw4cMDyWFEU+vTpQ0xMDP3798fNzY2ZM2dy5MgRwsLCqKiosGxbWVlJaGhoJyMI0TYVrTsQ+gsnaEsrGq7Y1mxWePbtA2z/oRi94co58ZW1za3m0fv06ujNyC+M6btfOaY/OCyAO27oz/xZoyzPPTwzimnjI6761RbPm8CcmwfLRVmix7T7k1ZfX88rr7yCTqdDq9WyYcMG3njjDY4fP87Zs2cB2L17N9HR0URERODl5UVmZiYA6enpJCYmWjeBcB2XfWi8WMzP1+toaG49rl+j1VHfaCC76Dw12p+nQXp5uFlm3kQN6G15PsDHs2NNuNCGti6iUqtV3D9tOCG9vS3P3RzTj4duH3nVrxcZ6sfsSYM79L2F6A7tDu9MnTqVw4cPM2fOHMxmMykpKcTHx7N8+XIWLlyITqdj1KhRPPPMMwCsXLmSJUuWoNVqiY6OJjU11eohhGtq1pvw9/GgvtFASbmWkQP6WF6rvnARVcHZOkL7eOPhrsZgNOPv40FlbcswTNTAPpZ5+739Olb0w4N9qaxtbnNpZCEcQYcm0C9atIhFixa1em7KlClMmTLlim2joqIs0zeFsKbz9TrGDQ3mSF4VJRUNjBzQB5PZjAoVVRfG8bVNBrRNBoZFBpJbUou/jwfDIwPx9nInMaYfH27PAVqupu2IR2aP5uTpmlYzeoRwJHLVlHAYbU0J0PT2xreXOyUVWgD+39pD9O/rR8hlRTlS43eh6Hvym7ujr/g6HR1T9+nlQdwITfsbCmGnpOgLh2ZWFCI0fpRUaNE2GcgtraVG2/IJoJenm2UdnT7+XripVZalEi76/S9jqaiRq2CF65CiLxxGWz19g9FMf40f3xw7a7lit7K2mYKzdWh6e9PYbKCqToe3pxtTx0cw6pJxf4DRg4La+KpCOC85GyUcmtFoJiLUl2a9iQPHf557X3C2ntA+3nhduODJy9ONlOkjZGhGuDwp+sKhGYxmIjUtF6ZknqxgSL8A+vh7ERTgRVLiEMttCb2vsQqnEK5EfhOEQ6hr0JNzyVo5FxlMZiJCfC2PRw/qw5zJQ0DVssTxxaLv5XntlTSFcBVS9IVD+DGnos3nJ48Nx9vLndDe3uiMJm6d0L/VHbEsRb+d5ZOFcBVS9IVjaOMs7rDIQOKjWpb5WPbrG3B3U+F22Z2nLhb9rqznJIQzkjF94RCUNoq2+yU9ei8PtysKPkD0kGAAel/l9oRCuBrp6QuH0ND88zLIgb6eNDQbmTiqb7v73ZkwkBtH9yX0kvVwhHBlUvSFQ6ht0Fv+HxbccuI2JO7qq1depFappOALcQkZ3hF2rbHZyIfbT7IrswSAPzySYOMWCeHYpKcv7JKiKPxwopx/7TxFXYOeWydE8h+JQxgQ2Qd9+7sLIa5Cir6wGzqDiS8OFGE2K5wur+dYfjUD+/rz5NxxDA4PsHXzhHAKUvSFXTArCu98nkVmTgVuahXu7moeuHU40yZEtDkrRwjRNVL0hV1YvyePzJwKfjltGNPj+2NWFLmFoBBWIEVf2JTRZGbzt4VsPXiaqeMjuG1if1QqFeo219QUQlwvKfrCZorO1fPelmyKy7UkRPclZfpwVCop9kJYU4eK/rx586iursbdvWXz5cuXExMTA8CHH37Itm3bWLNmDQDZ2dksXryYhoYG4uPjWbZsmWU/IaDlhubp3xSw7WAx/j4ePJ40lvGy5LEQPaLdaqwoCoWFhezevfuK4p2bm8vq1asZOHCg5bm0tDReeuklYmNjef7551m3bh0pKSnd33LhkArP1fH2pizKqhu5eVw4900bhm8vj/Z3FEJ0i3bPlOXn5wMwf/58Zs+ezYcffgiAXq9n6dKlPPnkk5ZtS0tLaW5uJjY2FoCkpCS2bt1qhWYLR7T7UCnLP8igrLqR1BkjeXjWKCn4QvSwdnv6dXV1JCQk8MILL2AwGEhNTWXw4MHs27ePuXPnEhkZadm2vLwcjebnj+kajYaysrJONSg42K9T219Ko/Hv8r6OyhEyn69v5u0NR/nm8BkAfv/gBG4ZH9nOXlfneWGZZEfI3iVt5HParNcgma2j3aIfFxdHXFyc5XFycjKvvvoqAwYM4LnnnuPgwYOW18xmc6sTcYqidPrEXFWVtkvL4Go0/lRU1Hd6P0dm75kbmg3sOVTK1oOn0RnMTB4bzqSxYYzsH9jldms0/ugNLTc7r7Xj7Ncj8LJ89n6crUEyd5xarepUZ7ndop+RkYHBYCAhoWXNE0VRGDVqFD/99BP33HMPjY2NVFZWsmjRItLS0qio+PlmF5WVlYSGhnY6hHB8WYXVvPtFNufrdQyLDOThmVGEB/u2v6MQwqraLfr19fW8/vrrfPzxxxgMBjZs2MCyZctYsWIFAAcPHuSNN97gz3/+MwBeXl5kZmYyYcIE0tPTSUxMtGoAYV/MisKGffl8caCIsCAfnn9oAkMjAmQqphB2ot2iP3XqVA4fPsycOXMwm82kpKS0Gu653MqVK1myZAlarZbo6GhSU1O7tcHCPhmMJorOadn1YwnfZZVx87hwUm4bIbcpFMLOqBRFsav7yMmYfsfZS+aDWWX8c9sJmnQtY9FzbxnCrJsGWqV3r9H4o590MwC1G7d0+9e3B4FzZgE/57OX49yTJHPHdfuYvhBXozOY+NdXp9h3+AyDwwO4bWIkA0L96RciY/dC2Csp+qJLzlY1sGrjMUorGph100Dm3DxYFkgTwgFI0RedllNcw18/O4JareK/7othzIWbjwsh7J8UfdFhZdWNfPTVKY7mVxEc0Iu0lDi5/6wQDkaKvuiQ8/U6nlv9HQC3T+zPrJsGEuDraeNWCSE6S4q+uKqq2mbSvy6gSWckp6QGgF+MCeOXtw63bcOEEF0mRV+0qUln5G/pxyg8V0/fIB/6h/qRGNOPsTJ+L4RDk6IvrnAkr5J/bjvJ+TodC+4aTcKYMFs3SQjRTaToC4vqumY+25vHgeNl9Avx5fnUMQztF2jrZgkhupEUfQHAZ3vz2HrwNACzJw3izoRBeLjLvHshnI0UfRdnMJrZsD+frQdPMzEqlHunDiUkUKZhCuGspOi7sOJyLX//PIuSCi2JMf146PYRclWtEE5Oir4LUhSF7T8Us35PHr7eHjyVPI6YYSG2bpYQogdI0XchZrNC/pk6vjxYxKFTlcQND+FXM6Pw95GLrIRwFVL0XURZdSNvpR/jdJkWgF/eOpzb4iPl5iZCuBgp+k5OURS+OXqOtTtyMJnN9PH34rH/GMuQfgG2bpoQwgak6DuxsupGNuzP5/vsckb2781v7h5NUEAvWzdLCGFDHSr68+bNo7q6Gnf3ls2XL1/OiRMnWLNmDSqVijFjxrBs2TI8PT3Jzs5m8eLFNDQ0EB8fz7Jlyyz7iZ6z7/AZPvjyBGqViqTEljtZqdUylCOEq2t3fp6iKBQWFpKenm75FxAQwLvvvsvHH3/Mpk2bMJvNfPTRRwCkpaWxdOlStm3bhqIorFu3zuohxM9qG/S8vek4H3x5At9e7iz5zwnc9YtBUvCFEEAHevr5+fkAzJ8/n5qaGu677z6mTp3Kiy++iJ9fy30ZR4wYwZkzZygtLaW5uZnY2FgAkpKSeP3110lJSbFeAgG0/HHef+Qsn+7ORWcwyVW1Qog2tVv06+rqSEhI4IUXXsBgMJCamsrgwYOZNGkSANXV1axdu5YVK1ZQXl6ORqOx7KvRaCgrK+tUgzpzg9/LaTT+Xd7XUWk0/pSU1/Pm+iMcy6siekgwjyXH0L+v874Xnh5ugBMf7zbyOW3Wa5DM1tFu0Y+LiyMuLs7yODk5mb179zJp0iTKyspYsGABc+fO5cYbbyQzM7PVFEBFUTo9JbCqSovZrHRqH+j6neQdWe8+Pvzz8+NsPlCIp7sbv5oZxeRx4ahVOO17odH4ozeYAKh10oyBl+VzxZ9tydxxarWqU53ldot+RkYGBoOBhIQEoKWQu7u7k5eXx4IFC5g3bx7z588HICwsjIqKCsu+lZWVhIaGdjaDaIfJbKbgbD2ffJhJXkktN4wK5YFbhxPo52Xrpgkh7Fy7A7719fW88sor6HQ6tFotGzZsYNq0afz617/mqaeeshR8gIiICLy8vMjMzAQgPT2dxMRE67XeBVXXNfPSPzL53zWZVNY0sfCeaBbeM0YKvhCiQ9rt6U+dOpXDhw8zZ84czGYzKSkpHDt2jMrKSt5//33ef/99AKZNm8ZTTz3FypUrWbJkCVqtlujoaFJTU60ewlXkltbyxr+P0qw3cvO4cH6TNA5js8HWzRJCOBCVoiidH0C3IhnTv1JDs4EdPxSz5bsi+vh78WRyDBEhvk6d+Wo0Gn/0k24GoHbjFhu3xjoC58wCfs7nqsdZMndMt4/pC9tRFIXvjpfx8a5T1DcaGDWwD4/OGYOft4etmyaEcFBS9O3UuepG1mw7SXbReQaHB/Bk8jiGhAfIAmlCiOsiRd/OmBWFL78rIv3rAjzc3Zh3+whuiY2QK2qFEN1Cir4dOV+v46Ovcsg8WUH8SA0P3jZCZuUIIbqVFH07YFYU0vcXsPlAIQD3TxvG7RP7y1COEKLbSdG3sZIKLZ/tyeNwXhWTxoRx5y8GERbkY+tmCSGclBR9G2lsNvLZvjx2/1iKm1rFQ7ePYGpchPTuhRBWJUXfBn7KrWTNtpPU1OuIHRZC6oyR9JaxeyFED5Ci34O0TQY+2pHDd1llRGh8eTxpLIPD5baFQoieI0W/h+SdqWXVhmPUNei5Z/Jg7kwYiLubrHUvhOhZUvStrL5Rz485FazdkUMvT3cemR1NfJSsPCqEsA0p+lZ0KKeCN/59FAWIHhzEI7OjZQkFIYRNSdG3gpIKLR9uzyGnuAYvDzceun0ECdFhclWtEMLmpOh3I6PJzJcHT/P5NwWoVCoCfDx46t4YOVkrhLAbUvS7SUm5lne/yKaorJ6JUaE8ePsIAnw8bd0sIYRoRYr+dTKZzez6sZTP9ubh5eHG7+aMkRO1Qgi7JUW/DVmF1eiNZmKHhbS77epNWfxwopxIjR//fX+MLJAmhLBrUvQvUd+oZ9PXhez8sQSAN59OxNvr2m/RoVMVTBobxsOzRqGWJRSEEHauQ0V/3rx5VFdX4+7esvny5ctpaGhgxYoV6HQ6Zs6cydNPPw1AdnY2ixcvpqGhgfj4eJYtW2bZz16ZFYV9P51h84FCztfp6OPvxfl6HUXn6oka2Oeq+xmMJowmhbAgHyn4QgiH0O4loYqiUFhYSHp6uuXfyJEjef7551m1ahVbtmzh2LFj7N27F4C0tDSWLl3Ktm3bUBSFdevWWT3E9TCazHy0I4d/bjuJwWhmcWo8//PwRAAKztVdc99GnQmg3U8DQghhL9qtVvn5+QDMnz+fmpoa7rvvPkaMGMHAgQPp378/AHfffTdbt25l2LBhNDc3ExsbC0BSUhKvv/46KSkp1ktwHU4UnWftjhxKKxu4cXRfUu8YaSngIYG9KDhz7aLfpDMCUvSFEI6j3WpVV1dHQkICL7zwAgaDgdTUVBYsWIBGo7FsExoaSllZGeXl5a2e12g0lJWVdapBnbmr++U0Gv8ObXc0t5INe3P5IauM0CAfFj98AzdGh7Va1jhqUBA5p89f82ueb2op+mGh/h3+3t3NVt/Xljw93AAnzt5GPqfNeg2S2TraLfpxcXHExcVZHicnJ/P6668zYcIEy3OKoqBSqTCbza0K58XnO6OqSovZrHRqH2h5syoq6tvdLquwmj9/ehijSWFqXAT3TxuGp4cblZXaVtv1C/Lh68NnyCusIsC37fn2Z8paPgnom/Qd+t7draOZnYlG44/e0DKsVuuk2QMvy+eqx1kyd4xarepUZ7ndop+RkYHBYCAhIQFoKeQRERFUVFRYtqmoqCA0NJSwsLBWz1dWVhIaaj9z1k+X1fOnTw4TFuzDsw+Ov+Y6OIPDW/7iFpytI6aNqZt6g4mN+1qGvmR4RwjhKNo9kVtfX88rr7yCTqdDq9WyYcMG/uu//ouCggKKioowmUxs3ryZxMREIiIi8PLyIjMzE4D09HQSExOtHqKjjuZXYVYUnkwe1+7CZwPD/FGpWor+pcyKwg8nyvm/azLJO1PH4PAAwoPl9oZCCMfQbhd16tSpHD58mDlz5mA2m0lJSSEuLo6XX36ZJ554Ap1Oxy233MKMGTMAWLlyJUuWLEGr1RIdHU1qaqrVQ3RU/pk6+gb5ENrbu91te3m60y/Yl8JzP3/cKq9p4pOdpzh0qhI3tYpf3zmKX4wJk1scCiEcRofGJRYtWsSiRYtaPZeQkMCmTZuu2DYqKor169d3S+O6k6Io5J+pY/SgoA7vMyjcn8O5VS3TVs/V86dPfsJoUpg8Npz7pg2TZZKFEA7HZQajq+qaqW3QMzSi4yteDgkP4Juj5/jL+iMczWs5ofvCf44ntI8M5wghHJPLFP38C3Puh/TreNEfdGFJ5KP5VcxKGMj0+P4EXmUmjxBCOAKXKvoe7moiNR2f2jSgrx9Tx0cQMzSYcUPbX3xNCCHsnUsUfYPRxA8nyhkY5t+pm5G7qdXMu32kFVsmhBA9y+mL/pnKBtbuyOF8vY4ZNwywdXOEEMKmnLboN+mMrNudy96fzuDupubhWVHcPK6frZslhBA25ZRFP7uwmve2nKC6rpnbJ/ZnVsJAuXWhEELgZEVfpzfx6Z5cdv1YSt8+3jz30ASGRQbaullCCGE3nKboH8+v4o9rM6ioaWZ6fCRzbxmK14XVCoUQQrRwiqKfV1rLirU/EuTvxTMpcYwccPW7XQkhhCtziqLv6+3BnMSh3BrXT1a8FEKIa+j4pHU7Fhbkw8N3R0vBF0KIdjhF0RdCCNExUvSFEMKFSNEXQggXIkVfCCFciBR9IYRwIVL0hRDChUjRF0IIF2J3E9vV6q7fZPx69nVUrpiZsDDAibO3kc9ps16DZLbOPipFUZROfxchhBAOSYZ3hBDChUjRF0IIFyJFXwghXIgUfSGEcCFS9IUQwoVI0RdCCBciRV8IIVyIFH0hhHAhUvSFEMKFSNEXQggX4vJF3xVXoZDMrkEyu4bOZra7Bdes6dtvv+XUqVOo1WruvPNOAgMDcXNzQ1EUVCrnXNxJMktmyew8uiOzy/T0MzIy+P3vf4+fnx+7du3izTff5PPPP8doNKJSqZyyhyCZJbNkdh7dldllVtl8//33MRqN/OY3v6GhoYHPPvuM/Px84uPjmTVrFmq18/39k8ySWTI7j+7K7HzvzFX07duX77//nuLiYnx9fbn33nsZNGgQhw4doq6uztbNswrJLJkls/PorsxOXfTz8vI4deoU58+fZ+LEiQwePJgDBw5QUVGBt7c39957L1lZWXz55Ze2bmq3yc3N5ejRo1RVVTFt2jTCw8M5cOAAlZWVTptZjrMcZ2fNbI3j7LRFf8+ePfzqV7/ivffe46GHHuLw4cOEhoZy9OhR9uzZw+nTp/H19WXKlClOM/63b98+HnvsMT766CPuuusuTCYTkydP5ocffmD37t1OmVmOsxxnOc6dy+x0s3cURUGr1fLpp5/ypz/9iYkTJ7Jp0ya2bt1KQkICarWavLw8Nm3axLhx49i8eTPvvfeerZt93crLy3nzzTf5wx/+wA033MDTTz/NoUOHGD9+PA0NDeTk5DhVZjnOcpzlOHcts9MVfZVKhb+/P4GBgRQXFzNx4kRmz56Nr68vW7Zs4a677iI5OZmMjAyqq6tZs2YNAwYMsHWzr1tQUBCRkZGEh4dz7tw5tm7disFg4NSpUzz66KM8+OCD5ObmUllZ6RSZ5TjLcZbj3MXjrDgRs9msmM1mxWg0KmvWrFFeffVV5fTp05bXN2zYoNx6661KVVWVDVvZvcxms6IoilJbW6vs2rVLURRFOXXqlPLpp58qiqIo27ZtU+66665W74Ojk+Msx1lR5Dh3lVON6atUKlQqFWVlZdxzzz0UFhby2WefUVxcDMCcOXOIiYmhpqbGtg3tRhcvyKitrWXq1KkADBs2jOTkZABuv/12Ro8eTX19vc3a2N3kOMtxBjnOXeVURR/gxIkTvPnmm/j7+5OWlsapU6f45JNPWLt2LRs3buTQoUP4+fnZupnd6sSJE/z973+noaEBAL1eT25uLhkZGXz++eccPXqU4OBgG7eye+Xk5PDWW2+51HHOycnhnXfecfrjbDKZMJlMgOv8Pl+e2Zq/zw5/cdbevXvZsWMHGo2GuLg4EhMT0Wq1lh+Ec+fOsW/fPrKysmhsbGTBggWMGDHCxq2+Pu1lbmpq4oMPPiAnJ4fa2lqee+45hg8fbuNWX5+CggI+//xzHn/8cdRqNdXV1Xh5eeHr6ws453FuL7MzHue9e/eSnp6OyWRi5syZzJgxwyV+n6+VuduP8/WOQdlSRkaGMmvWLGXDhg3KunXrlPHjxyv/+te/FEVRFKPRqBgMhlbbNzU12aKZ3epamU0mk2IymRRFURS9Xq8oiqLU19fbrK3d4eIY5/bt25Vbb71Veeedd1od10szX+Tox7m9zBdfVxTnOc6KoigHDhxQZs+erezcuVP58ssvlYSEBOXw4cOKojjncVaUa2e21nF26Nk7lZWVTJ48mTlz5gAwZMgQnn32WVQqFffffz8A+/fvR6vVMnPmTLy8vGzY2u7Rkcz79u2jsbGRGTNmWHqFjq6goICQkBAqKip46623+N3vfoebmxsAarWar7/+mvr6eqc5znD1zMqFxbX2799PQ0OD0xzn3Nxc7r33XqZNmwa0zM2vqqoCsCwx4Gy/z9fKfHF8v7t/nx16TN/X15eSkhLLWNiECRN4+eWXefXVV9mzZw8A9fX1jB07FsApVt7rSGatVsuYMWMAx898sf2hoaFMnz6dhIQEzpw5w6pVqzCZTKjVahobG53qOHc0szMdZ4C6ujrLSVqA5uZmjh8/3mobZzrO0LHM3X2cHW5M/6effqK2tpaAgADi4uJ47LHHMJvNvPXWW5Zt1q5dy/nz53n88ccxmUyWHqGjcuXMXl5e3HTTTZSVleHn54evry+7d+9m586dhIeH88gjj+Du7i6ZHdRPP/1ETU0NwcHBjB07luzsbPr374+fnx/PPfcc48eP595772Xjxo0MGTKEcePG2brJ183WmR2qp793716ef/559u7dy7vvvsuiRYt48803qa+vZ+HCheh0OgAaGhqorKwEcPjV9lw980cffcSCBQvo27ev5aPtpEmTuO2228jNzeXdd98FcPji58qZ9+3bx9tvv81vf/tbRo0ahZ+fH0ajkfPnzzNgwAD279/P6tWr8fb2tnWTr5s9ZHaonv6zzz5LYmIis2bNwmg0snDhQoxGIx988AFPPfUUBoOBwMBAsrOzefXVVx1+JgNIZqPRyOOPP865c+fYuHGjZRu9Xs/333/PiBEjCA0NtV1ju4lkvjLzH/7wB3JycmhqamLFihUu8bPdE5kdqksYEBCAwWAAwN3dnXfeeQdPT09+//vf85e//IXf/OY3zJo1i7/+9a9O8QMCktnd3Z2//e1vRERE8Nvf/tayjaenJ5MnT3aK4geS+dLMCxYsAKCxsZHDhw+zcuVKp//Z7tHM1z3/x8ounba0fft2JT4+3jKlSVEUpbGxUVm4cGGr5xydZG4782OPPaZkZGTYonlWIZnbzvzoo48qWVlZSlVVlVJUVGSLZnYre8tstz195bJRp5ycHG677Taeeuop0tLSOHr0KADe3t74+fk5xY0TJPO1M3t7e9PU1GSLZnYryXztzL6+vpSXlxMUFOTQi6fZa2a7naff2NhoOYlVXFzMP/7xD5577jkeeughFEVh/vz5pKWlUV9fz8mTJxk4cKCNW3z9JLNklswtmZ988kkbt/j62WtmuzyRu2fPHjZu3Ejv3r0ZO3Zsq4sSzGYzarWaHTt2cPLkSaqqqkhJSXH4MT/JLJkls2TuCXZX9E+dOsWCBQt4+eWXKSgooLi4mJKSEp555hkiIyMxGo24u9vtB5QukcySWTI7D3vPbHdj+jqdjptvvpmEhARSUlJ44IEHGDRoEK+++ioVFRW4u7uzf/9+tm3bhslkcopbo0lmySyZJXNPsZuif/r0aXJycggICOC7775j586dAAwYMIC5c+fSr18/yzIDdXV1REdH4+bm5tCXYktmySyZJXNPZ7aLz1Xbt2/ntddeIyQkhHHjxjFp0iQ++eQT+vTpw/jx4xk0aBBhYWFkZ2cDcOedd9q4xddPMktmySyZbcHmPf3GxkY2bdrEH//4R9asWcOoUaPQ6/UcPnyYt99+m+3btwPg7+9PXV0dOp3O4T8CSmbJLJkls63YvKevUqmorq7mzJkzjB49mlmzZhEaGoq7uzt+fn787//+L1999RU//vgjq1atcorlVCWzZJbMktlWbF70vb29SU5OZt++fURGRhIVFcWECRMoKSkhKyuLd999F3d3d7y9vZ3m8nPJLJkls2S2FZsP7wBMmTKFgIAAvvjiC06cOIGbmxtJSUmcPHkSRVEYOHCgXbxZ3UkyS2bJ7DwcKbNdFP2goCAefPBBzGYz//znP9myZQtbtmyhpqaGPn362Lp5ViGZJbNkdh6OlNmuLs6qrq7mm2++YfPmzQQEBDB//nxGjRpl62ZZlWSWzM5KMttnZrsq+hfp9XpUKhUeHh62bkqPkcyuQTK7BnvObJdFXwghhHXYxZi+EEKIniFFXwghXIgUfSGEcCFS9IUQwoVI0RdCCBciRV8IIVyIFH0hhHAh/x+S7zCatyzMDAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from kats.detectors.robust_stat_detection import RobustStatDetector\n", + "\n", + "ts_bocpd = TimeSeriesData(df.loc[:,['time','SOURCE_S']])\n", + "detector = RobustStatDetector(ts_bocpd)\n", + "changepoints = detector.detector(p_value_cutoff = 5e-5, comparison_window=2)\n", + "\n", + "# plot the results\n", + "detector.plot(changepoints)\n", + "plt.xticks(rotation=45)\n", + "plt.show()" + ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3.9.13 64-bit", + "display_name": "Python 3.9.7 ('base')", "language": "python", "name": "python3" }, @@ -2312,12 +1286,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.13" + "version": "3.9.7" }, "orig_nbformat": 4, "vscode": { "interpreter": { - "hash": "397704579725e15f5c7cb49fe5f0341eb7531c82d19f2c29d197e8b64ab5776b" + "hash": "35ac539f20c4edc7c4b10c8a5969be22a35cbd7bf12b66c83932160e8a573333" } } },