Spaces:
Build error
Build error
Merge pull request #1 from dodijk/restructure
Browse files- app.py +164 -16
- clip_data.ipynb +276 -3
app.py
CHANGED
@@ -16,13 +16,19 @@ import matplotlib.pyplot as plt
|
|
16 |
import imagehash
|
17 |
from PIL import Image
|
18 |
|
19 |
-
import numpy as np
|
20 |
import pandas as pd
|
21 |
import faiss
|
22 |
|
23 |
import shutil
|
24 |
|
|
|
|
|
|
|
|
|
25 |
FPS = 5
|
|
|
|
|
26 |
|
27 |
video_directory = tempfile.gettempdir()
|
28 |
|
@@ -77,6 +83,8 @@ def compute_hashes(clip, fps=FPS):
|
|
77 |
yield {"frame": 1+index*fps, "hash": hashed}
|
78 |
|
79 |
def index_hashes_for_video(url, is_file = False):
|
|
|
|
|
80 |
if not is_file:
|
81 |
filename = download_video_from_url(url)
|
82 |
else:
|
@@ -105,7 +113,7 @@ def index_hashes_for_video(url, is_file = False):
|
|
105 |
logging.info(f"Indexed hashes for {index.ntotal} frames to {filename}.index.")
|
106 |
return index
|
107 |
|
108 |
-
def
|
109 |
"""" The comparison between the target and the original video will be plotted based
|
110 |
on the matches between the target and the original video over time. The matches are determined
|
111 |
based on the minimum distance between hashes (as computed by faiss-vectors) before they're considered a match.
|
@@ -116,9 +124,8 @@ def compare_videos(url, target, MIN_DISTANCE = 3): # , is_file = False):
|
|
116 |
- MIN_DISTANCE: integer representing the minimum distance between hashes on bit-level before its considered a match
|
117 |
"""
|
118 |
# TODO: Fix crash if no matches are found
|
119 |
-
|
120 |
-
|
121 |
-
elif url.endswith('.mp4'):
|
122 |
is_file = True
|
123 |
|
124 |
# Url (short video)
|
@@ -128,13 +135,32 @@ def compare_videos(url, target, MIN_DISTANCE = 3): # , is_file = False):
|
|
128 |
|
129 |
# Target video (long video)
|
130 |
target_indices = [index_hashes_for_video(x) for x in [target]]
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
132 |
# The results are returned as a triplet of 1D arrays
|
133 |
# lims, D, I, where result for query i is in I[lims[i]:lims[i+1]]
|
134 |
# (indices of neighbors), D[lims[i]:lims[i+1]] (distances).
|
135 |
lims, D, I = target_indices[0].range_search(hash_vectors, MIN_DISTANCE)
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
def plot_comparison(lims, D, I, hash_vectors, MIN_DISTANCE = 3):
|
140 |
sns.set_theme()
|
@@ -168,29 +194,151 @@ def plot_comparison(lims, D, I, hash_vectors, MIN_DISTANCE = 3):
|
|
168 |
return fig
|
169 |
|
170 |
logging.basicConfig()
|
171 |
-
logging.getLogger().setLevel(logging.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
video_urls = ["https://www.dropbox.com/s/8c89a9aba0w8gjg/Ploumen.mp4?dl=1",
|
174 |
"https://www.dropbox.com/s/rzmicviu1fe740t/Bram%20van%20Ojik%20krijgt%20reprimande.mp4?dl=1",
|
175 |
"https://www.dropbox.com/s/wcot34ldmb84071/Baudet%20ontmaskert%20Omtzigt_%20u%20bent%20door%20de%20mand%20gevallen%21.mp4?dl=1",
|
|
|
176 |
"https://www.dropbox.com/s/4ognq8lshcujk43/Plenaire_zaal_20200923132426_Omtzigt.mp4?dl=1"]
|
177 |
|
178 |
index_iface = gr.Interface(fn=lambda url: index_hashes_for_video(url).ntotal,
|
179 |
-
inputs="text",
|
|
|
180 |
examples=video_urls, cache_examples=True)
|
181 |
|
182 |
-
compare_iface = gr.Interface(fn=
|
183 |
-
inputs=["text", "text", gr.Slider(
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
examples=[[x, video_urls[-1]] for x in video_urls[:-1]])
|
185 |
|
186 |
-
iface = gr.TabbedInterface([
|
187 |
|
188 |
if __name__ == "__main__":
|
189 |
import matplotlib
|
190 |
-
matplotlib.use('SVG')
|
191 |
|
192 |
logging.basicConfig()
|
193 |
-
logging.getLogger().setLevel(logging.
|
194 |
|
195 |
-
iface.launch()
|
196 |
#iface.launch(auth=("test", "test"), share=True, debug=True)
|
|
|
16 |
import imagehash
|
17 |
from PIL import Image
|
18 |
|
19 |
+
import numpy as np
|
20 |
import pandas as pd
|
21 |
import faiss
|
22 |
|
23 |
import shutil
|
24 |
|
25 |
+
from kats.detectors.cusum_detection import CUSUMDetector
|
26 |
+
from kats.detectors.robust_stat_detection import RobustStatDetector
|
27 |
+
from kats.consts import TimeSeriesData
|
28 |
+
|
29 |
FPS = 5
|
30 |
+
MIN_DISTANCE = 4
|
31 |
+
MAX_DISTANCE = 30
|
32 |
|
33 |
video_directory = tempfile.gettempdir()
|
34 |
|
|
|
83 |
yield {"frame": 1+index*fps, "hash": hashed}
|
84 |
|
85 |
def index_hashes_for_video(url, is_file = False):
|
86 |
+
""" Download a video if it is a url, otherwise refer to the file. Secondly index the video
|
87 |
+
using faiss indices and return thi index. """
|
88 |
if not is_file:
|
89 |
filename = download_video_from_url(url)
|
90 |
else:
|
|
|
113 |
logging.info(f"Indexed hashes for {index.ntotal} frames to {filename}.index.")
|
114 |
return index
|
115 |
|
116 |
+
def get_video_indices(url, target, MIN_DISTANCE = 4):
|
117 |
"""" The comparison between the target and the original video will be plotted based
|
118 |
on the matches between the target and the original video over time. The matches are determined
|
119 |
based on the minimum distance between hashes (as computed by faiss-vectors) before they're considered a match.
|
|
|
124 |
- MIN_DISTANCE: integer representing the minimum distance between hashes on bit-level before its considered a match
|
125 |
"""
|
126 |
# TODO: Fix crash if no matches are found
|
127 |
+
is_file = False
|
128 |
+
if url.endswith('.mp4'):
|
|
|
129 |
is_file = True
|
130 |
|
131 |
# Url (short video)
|
|
|
135 |
|
136 |
# Target video (long video)
|
137 |
target_indices = [index_hashes_for_video(x) for x in [target]]
|
138 |
+
|
139 |
+
return video_index, hash_vectors, target_indices
|
140 |
+
|
141 |
+
def compare_videos(video_index, hash_vectors, target_indices, MIN_DISTANCE = 3): # , is_file = False):
|
142 |
+
""" Search for matches between the indices of the target video (long video)
|
143 |
+
and the given hash vectors of a video"""
|
144 |
# The results are returned as a triplet of 1D arrays
|
145 |
# lims, D, I, where result for query i is in I[lims[i]:lims[i+1]]
|
146 |
# (indices of neighbors), D[lims[i]:lims[i+1]] (distances).
|
147 |
lims, D, I = target_indices[0].range_search(hash_vectors, MIN_DISTANCE)
|
148 |
+
return lims, D, I, hash_vectors
|
149 |
+
|
150 |
+
def get_decent_distance(url, target, MIN_DISTANCE, MAX_DISTANCE):
|
151 |
+
""" To get a decent heurstic for a base distance check every distance from MIN_DISTANCE to MAX_DISTANCE
|
152 |
+
until the number of matches found is equal to or higher than the number of frames in the source video"""
|
153 |
+
for distance in np.arange(start = MIN_DISTANCE - 2, stop = MAX_DISTANCE + 2, step = 2, dtype=int):
|
154 |
+
distance = int(distance)
|
155 |
+
video_index, hash_vectors, target_indices = get_video_indices(url, target, MIN_DISTANCE = distance)
|
156 |
+
lims, D, I, hash_vectors = compare_videos(video_index, hash_vectors, target_indices, MIN_DISTANCE = distance)
|
157 |
+
nr_source_frames = video_index.ntotal
|
158 |
+
nr_matches = len(D)
|
159 |
+
logging.info(f"{(nr_matches/nr_source_frames) * 100.0:.1f}% of frames have a match for distance '{distance}' ({nr_matches} matches for {nr_source_frames} frames)")
|
160 |
+
if nr_matches >= nr_source_frames:
|
161 |
+
return distance
|
162 |
+
logging.warning(f"No matches found for any distance between {MIN_DISTANCE} and {MAX_DISTANCE}")
|
163 |
+
return None
|
164 |
|
165 |
def plot_comparison(lims, D, I, hash_vectors, MIN_DISTANCE = 3):
|
166 |
sns.set_theme()
|
|
|
194 |
return fig
|
195 |
|
196 |
logging.basicConfig()
|
197 |
+
logging.getLogger().setLevel(logging.INFO)
|
198 |
+
|
199 |
+
def plot_multi_comparison(df, change_points):
|
200 |
+
""" From the dataframe plot the current set of plots, where the bottom right is most indicative """
|
201 |
+
fig, ax_arr = plt.subplots(3, 2, figsize=(12, 6), dpi=100, sharex=True)
|
202 |
+
sns.scatterplot(data = df, x='time', y='SOURCE_S', ax=ax_arr[0,0])
|
203 |
+
sns.lineplot(data = df, x='time', y='SOURCE_LIP_S', ax=ax_arr[0,1])
|
204 |
+
sns.scatterplot(data = df, x='time', y='OFFSET', ax=ax_arr[1,0])
|
205 |
+
sns.lineplot(data = df, x='time', y='OFFSET_LIP', ax=ax_arr[1,1])
|
206 |
+
|
207 |
+
# Plot change point as lines
|
208 |
+
sns.lineplot(data = df, x='time', y='OFFSET_LIP', ax=ax_arr[2,1])
|
209 |
+
for x in change_points:
|
210 |
+
cp_time = x.start_time
|
211 |
+
plt.vlines(x=cp_time, ymin=np.min(df['OFFSET_LIP']), ymax=np.max(df['OFFSET_LIP']), colors='red', lw=2)
|
212 |
+
rand_y_pos = np.random.uniform(low=np.min(df['OFFSET_LIP']), high=np.max(df['OFFSET_LIP']), size=None)
|
213 |
+
plt.text(x=cp_time, y=rand_y_pos, s=str(np.round(x.confidence, 2)), color='r', rotation=-0.0, fontsize=14)
|
214 |
+
plt.xticks(rotation=90)
|
215 |
+
return fig
|
216 |
+
|
217 |
+
|
218 |
+
def get_videomatch_df(url, target, min_distance=MIN_DISTANCE, vanilla_df=False):
|
219 |
+
distance = get_decent_distance(url, target, MIN_DISTANCE, MAX_DISTANCE)
|
220 |
+
video_index, hash_vectors, target_indices = get_video_indices(url, target, MIN_DISTANCE = distance)
|
221 |
+
lims, D, I, hash_vectors = compare_videos(video_index, hash_vectors, target_indices, MIN_DISTANCE = distance)
|
222 |
+
|
223 |
+
target = [(lims[i+1]-lims[i]) * [i] for i in range(hash_vectors.shape[0])]
|
224 |
+
target_s = [i/FPS for j in target for i in j]
|
225 |
+
source_s = [i/FPS for i in I]
|
226 |
+
|
227 |
+
# Make df
|
228 |
+
df = pd.DataFrame(zip(target_s, source_s, D, I), columns = ['TARGET_S', 'SOURCE_S', 'DISTANCE', 'INDICES'])
|
229 |
+
if vanilla_df:
|
230 |
+
return df
|
231 |
+
|
232 |
+
# Minimum distance dataframe ----
|
233 |
+
# Group by X so for every second/x there will be 1 value of Y in the end
|
234 |
+
# index_min_distance = df.groupby('TARGET_S')['DISTANCE'].idxmin()
|
235 |
+
# df_min = df.loc[index_min_distance]
|
236 |
+
# df_min
|
237 |
+
# -------------------------------
|
238 |
+
|
239 |
+
df['TARGET_WEIGHT'] = 1 - df['DISTANCE']/distance # Higher value means a better match
|
240 |
+
df['SOURCE_WEIGHTED_VALUE'] = df['SOURCE_S'] * df['TARGET_WEIGHT'] # Multiply the weight (which indicates a better match) with the value for Y and aggregate to get a less noisy estimate of Y
|
241 |
+
|
242 |
+
# Group by X so for every second/x there will be 1 value of Y in the end
|
243 |
+
grouped_X = df.groupby('TARGET_S').agg({'SOURCE_WEIGHTED_VALUE' : 'sum', 'TARGET_WEIGHT' : 'sum'})
|
244 |
+
grouped_X['FINAL_SOURCE_VALUE'] = grouped_X['SOURCE_WEIGHTED_VALUE'] / grouped_X['TARGET_WEIGHT']
|
245 |
+
|
246 |
+
# Remake the dataframe
|
247 |
+
df = grouped_X.reset_index()
|
248 |
+
df = df.drop(columns=['SOURCE_WEIGHTED_VALUE', 'TARGET_WEIGHT'])
|
249 |
+
df = df.rename({'FINAL_SOURCE_VALUE' : 'SOURCE_S'}, axis='columns')
|
250 |
+
|
251 |
+
# Add NAN to "missing" x values (base it off hash vector, not target_s)
|
252 |
+
step_size = 1/FPS
|
253 |
+
x_complete = np.round(np.arange(start=0.0, stop = max(df['TARGET_S'])+step_size, step = step_size), 1) # More robust
|
254 |
+
df['TARGET_S'] = np.round(df['TARGET_S'], 1)
|
255 |
+
df_complete = pd.DataFrame(x_complete, columns=['TARGET_S'])
|
256 |
+
|
257 |
+
# Merge dataframes to get NAN values for every missing SOURCE_S
|
258 |
+
df = df_complete.merge(df, on='TARGET_S', how='left')
|
259 |
+
|
260 |
+
# Interpolate between frames since there are missing values
|
261 |
+
df['SOURCE_LIP_S'] = df['SOURCE_S'].interpolate(method='linear', limit_direction='both', axis=0)
|
262 |
+
|
263 |
+
# Add timeshift col and timeshift col with Linearly Interpolated Values
|
264 |
+
df['TIMESHIFT'] = df['SOURCE_S'].shift(1) - df['SOURCE_S']
|
265 |
+
df['TIMESHIFT_LIP'] = df['SOURCE_LIP_S'].shift(1) - df['SOURCE_LIP_S']
|
266 |
+
|
267 |
+
# Add Offset col that assumes the video is played at the same speed as the other to do a "timeshift"
|
268 |
+
df['OFFSET'] = df['SOURCE_S'] - df['TARGET_S'] - np.min(df['SOURCE_S'])
|
269 |
+
df['OFFSET_LIP'] = df['SOURCE_LIP_S'] - df['TARGET_S'] - np.min(df['SOURCE_LIP_S'])
|
270 |
+
|
271 |
+
# Add time column for plotting
|
272 |
+
df['time'] = pd.to_datetime(df["TARGET_S"], unit='s') # Needs a datetime as input
|
273 |
+
return df
|
274 |
+
|
275 |
+
def get_change_points(df, smoothing_window_size=10, method='CUSUM'):
|
276 |
+
tsd = TimeSeriesData(df.loc[:,['time','OFFSET_LIP']])
|
277 |
+
if method.upper() == "CUSUM":
|
278 |
+
detector = CUSUMDetector(tsd)
|
279 |
+
elif method.upper() == "ROBUST":
|
280 |
+
detector = RobustStatDetector(tsd)
|
281 |
+
change_points = detector.detector(smoothing_window_size=smoothing_window_size, comparison_window=-2)
|
282 |
+
|
283 |
+
# Print some stats
|
284 |
+
if method.upper() == "CUSUM" and change_points != []:
|
285 |
+
mean_offset_prechange = change_points[0].mu0
|
286 |
+
mean_offset_postchange = change_points[0].mu1
|
287 |
+
jump_s = mean_offset_postchange - mean_offset_prechange
|
288 |
+
print(f"Video jumps {jump_s:.1f}s in time at {mean_offset_prechange:.1f} seconds")
|
289 |
+
return change_points
|
290 |
+
|
291 |
+
def get_comparison(url, target, MIN_DISTANCE = 4):
|
292 |
+
""" Function for Gradio to combine all helper functions"""
|
293 |
+
video_index, hash_vectors, target_indices = get_video_indices(url, target, MIN_DISTANCE = MIN_DISTANCE)
|
294 |
+
lims, D, I, hash_vectors = compare_videos(video_index, hash_vectors, target_indices, MIN_DISTANCE = MIN_DISTANCE)
|
295 |
+
fig = plot_comparison(lims, D, I, hash_vectors, MIN_DISTANCE = MIN_DISTANCE)
|
296 |
+
return fig
|
297 |
+
|
298 |
+
def get_auto_comparison(url, target, smoothing_window_size=10, method="CUSUM"):
|
299 |
+
""" Function for Gradio to combine all helper functions"""
|
300 |
+
distance = get_decent_distance(url, target, MIN_DISTANCE, MAX_DISTANCE)
|
301 |
+
if distance == None:
|
302 |
+
raise gr.Error("No matches found!")
|
303 |
+
video_index, hash_vectors, target_indices = get_video_indices(url, target, MIN_DISTANCE = distance)
|
304 |
+
lims, D, I, hash_vectors = compare_videos(video_index, hash_vectors, target_indices, MIN_DISTANCE = distance)
|
305 |
+
# fig = plot_comparison(lims, D, I, hash_vectors, MIN_DISTANCE = distance)
|
306 |
+
df = get_videomatch_df(url, target, min_distance=MIN_DISTANCE, vanilla_df=False)
|
307 |
+
change_points = get_change_points(df, smoothing_window_size=smoothing_window_size, method=method)
|
308 |
+
fig = plot_multi_comparison(df, change_points)
|
309 |
+
return fig
|
310 |
+
|
311 |
+
|
312 |
|
313 |
video_urls = ["https://www.dropbox.com/s/8c89a9aba0w8gjg/Ploumen.mp4?dl=1",
|
314 |
"https://www.dropbox.com/s/rzmicviu1fe740t/Bram%20van%20Ojik%20krijgt%20reprimande.mp4?dl=1",
|
315 |
"https://www.dropbox.com/s/wcot34ldmb84071/Baudet%20ontmaskert%20Omtzigt_%20u%20bent%20door%20de%20mand%20gevallen%21.mp4?dl=1",
|
316 |
+
"https://drive.google.com/uc?id=1XW0niHR1k09vPNv1cp6NvdGXe7FHJc1D&export=download",
|
317 |
"https://www.dropbox.com/s/4ognq8lshcujk43/Plenaire_zaal_20200923132426_Omtzigt.mp4?dl=1"]
|
318 |
|
319 |
index_iface = gr.Interface(fn=lambda url: index_hashes_for_video(url).ntotal,
|
320 |
+
inputs="text",
|
321 |
+
outputs="text",
|
322 |
examples=video_urls, cache_examples=True)
|
323 |
|
324 |
+
compare_iface = gr.Interface(fn=get_comparison,
|
325 |
+
inputs=["text", "text", gr.Slider(2, 30, 4, step=2)],
|
326 |
+
outputs="plot",
|
327 |
+
examples=[[x, video_urls[-1]] for x in video_urls[:-1]])
|
328 |
+
|
329 |
+
auto_compare_iface = gr.Interface(fn=get_auto_comparison,
|
330 |
+
inputs=["text", "text", gr.Slider(1, 50, 10, step=1), gr.Dropdown(choices=["CUSUM", "Robust"], value="CUSUM")],
|
331 |
+
outputs="plot",
|
332 |
examples=[[x, video_urls[-1]] for x in video_urls[:-1]])
|
333 |
|
334 |
+
iface = gr.TabbedInterface([auto_compare_iface, compare_iface, index_iface,], ["AutoCompare", "Compare", "Index"])
|
335 |
|
336 |
if __name__ == "__main__":
|
337 |
import matplotlib
|
338 |
+
matplotlib.use('SVG') # To be able to plot in gradio
|
339 |
|
340 |
logging.basicConfig()
|
341 |
+
logging.getLogger().setLevel(logging.INFO)
|
342 |
|
343 |
+
iface.launch(inbrowser=True, debug=True)
|
344 |
#iface.launch(auth=("test", "test"), share=True, debug=True)
|
clip_data.ipynb
CHANGED
@@ -2,9 +2,49 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
{
|
9 |
"name": "stdout",
|
10 |
"output_type": "stream",
|
@@ -34,7 +74,7 @@
|
|
34 |
"name": "stderr",
|
35 |
"output_type": "stream",
|
36 |
"text": [
|
37 |
-
"
|
38 |
]
|
39 |
},
|
40 |
{
|
@@ -107,11 +147,244 @@
|
|
107 |
" video.write_videofile(output_filename, audio_codec='aac')\n",
|
108 |
"\n",
|
109 |
"# edit_remove_part(\"videos/Ploumen.mp4\", start_s = 5.0, end_s = 10.0)\n",
|
110 |
-
"edit_change_order(\"videos/Ploumen.mp4\", start_s = 5.0, end_s = 10.0, insert_s = 15.0)\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
"\n",
|
|
|
|
|
|
|
|
|
112 |
"\n"
|
113 |
]
|
114 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
{
|
116 |
"cell_type": "code",
|
117 |
"execution_count": null,
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 5,
|
6 |
"metadata": {},
|
7 |
"outputs": [
|
8 |
+
{
|
9 |
+
"name": "stderr",
|
10 |
+
"output_type": "stream",
|
11 |
+
"text": [
|
12 |
+
"DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): api.ipify.org:443\n",
|
13 |
+
"DEBUG:urllib3.connectionpool:https://api.ipify.org:443 \"GET / HTTP/1.1\" 200 15\n",
|
14 |
+
"DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): api.gradio.app:443\n",
|
15 |
+
"DEBUG:urllib3.connectionpool:https://api.gradio.app:443 \"POST /gradio-initiated-analytics/ HTTP/1.1\" 200 31\n",
|
16 |
+
"DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): api.gradio.app:443\n",
|
17 |
+
"DEBUG:urllib3.connectionpool:https://api.gradio.app:443 \"POST /gradio-initiated-analytics/ HTTP/1.1\" 200 31\n",
|
18 |
+
"DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): api.gradio.app:443\n",
|
19 |
+
"DEBUG:urllib3.connectionpool:https://api.gradio.app:443 \"GET /pkg-version HTTP/1.1\" 200 20\n",
|
20 |
+
"DEBUG:asyncio:Using selector: KqueueSelector\n",
|
21 |
+
"DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): api.ipify.org:443\n"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"name": "stdout",
|
26 |
+
"output_type": "stream",
|
27 |
+
"text": [
|
28 |
+
"Using cache from '/Users/ijanssen/videomatch/gradio_cached_examples/15' directory. If method or examples have changed since last caching, delete this folder to clear cache.\n"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"name": "stderr",
|
33 |
+
"output_type": "stream",
|
34 |
+
"text": [
|
35 |
+
"DEBUG:urllib3.connectionpool:https://api.ipify.org:443 \"GET / HTTP/1.1\" 200 15\n",
|
36 |
+
"DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): api.gradio.app:443\n",
|
37 |
+
"DEBUG:urllib3.connectionpool:https://api.gradio.app:443 \"POST /gradio-initiated-analytics/ HTTP/1.1\" 200 31\n",
|
38 |
+
"DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): api.gradio.app:443\n",
|
39 |
+
"DEBUG:urllib3.connectionpool:https://api.gradio.app:443 \"POST /gradio-initiated-analytics/ HTTP/1.1\" 200 31\n",
|
40 |
+
"DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): api.gradio.app:443\n",
|
41 |
+
"DEBUG:urllib3.connectionpool:https://api.gradio.app:443 \"GET /pkg-version HTTP/1.1\" 200 20\n",
|
42 |
+
"DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): api.ipify.org:443\n",
|
43 |
+
"DEBUG:urllib3.connectionpool:https://api.ipify.org:443 \"GET / HTTP/1.1\" 200 15\n",
|
44 |
+
"DEBUG:urllib3.connectionpool:Starting new HTTPS connection (1): api.gradio.app:443\n",
|
45 |
+
"DEBUG:urllib3.connectionpool:https://api.gradio.app:443 \"POST /gradio-initiated-analytics/ HTTP/1.1\" 200 31\n"
|
46 |
+
]
|
47 |
+
},
|
48 |
{
|
49 |
"name": "stdout",
|
50 |
"output_type": "stream",
|
|
|
74 |
"name": "stderr",
|
75 |
"output_type": "stream",
|
76 |
"text": [
|
77 |
+
" \r"
|
78 |
]
|
79 |
},
|
80 |
{
|
|
|
147 |
" video.write_videofile(output_filename, audio_codec='aac')\n",
|
148 |
"\n",
|
149 |
"# edit_remove_part(\"videos/Ploumen.mp4\", start_s = 5.0, end_s = 10.0)\n",
|
150 |
+
"# edit_change_order(\"videos/Ploumen.mp4\", start_s = 5.0, end_s = 10.0, insert_s = 15.0)\n",
|
151 |
+
"\n",
|
152 |
+
"\n"
|
153 |
+
]
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"cell_type": "code",
|
157 |
+
"execution_count": 21,
|
158 |
+
"metadata": {},
|
159 |
+
"outputs": [
|
160 |
+
{
|
161 |
+
"name": "stdout",
|
162 |
+
"output_type": "stream",
|
163 |
+
"text": [
|
164 |
+
"[(51, 92), (14, 98), (64, 85), (63, 90), (63, 96)]\n",
|
165 |
+
"[112, 0, 53, 96, 123]\n"
|
166 |
+
]
|
167 |
+
}
|
168 |
+
],
|
169 |
+
"source": [
|
170 |
+
"\n",
|
171 |
+
"import numpy as np\n",
|
172 |
+
"\n",
|
173 |
+
"MAX = 130\n",
|
174 |
+
"\n",
|
175 |
+
"# Get some random start_s and end_s pairs where start_s is always lower than end_s\n",
|
176 |
+
"rand_start_s = np.random.randint(low=0, high=MAX, size=5)\n",
|
177 |
+
"rand_end_s = np.random.randint(low=0, high=MAX, size=5)\n",
|
178 |
+
"rand_pairs = zip(rand_start_s, rand_end_s)\n",
|
179 |
+
"rand_pairs = [(x,y) if (x < y) else (y, x) for x, y in rand_pairs]\n",
|
180 |
+
"\n",
|
181 |
+
"def get_insert_s(start_s, end_s, max=MAX):\n",
|
182 |
+
" \"\"\" Get a insert_s that is outside the start_s and end_s \"\"\"\n",
|
183 |
+
" random_choice = bool(np.random.randint(low=0, high=2, size=1)[0])\n",
|
184 |
+
" if random_choice:\n",
|
185 |
+
" return np.random.randint(low=0, high=start_s, size=1)[0]\n",
|
186 |
+
" else:\n",
|
187 |
+
" return np.random.randint(low=end_s, high=MAX, size=1)[0]\n",
|
188 |
"\n",
|
189 |
+
"rand_insert_s = [get_insert_s(x, y) for x, y in rand_pairs]\n",
|
190 |
+
"\n",
|
191 |
+
"print(rand_pairs)\n",
|
192 |
+
"print(rand_insert_s)\n",
|
193 |
"\n"
|
194 |
]
|
195 |
},
|
196 |
+
{
|
197 |
+
"cell_type": "code",
|
198 |
+
"execution_count": 22,
|
199 |
+
"metadata": {},
|
200 |
+
"outputs": [
|
201 |
+
{
|
202 |
+
"name": "stdout",
|
203 |
+
"output_type": "stream",
|
204 |
+
"text": [
|
205 |
+
"Part Start = 51.0, Part Cutout = 41, Part Mid = 20, Part End = 38.03\n",
|
206 |
+
"Moviepy - Building video videos/Ploumen_CO_51s_to_92_at_112.mp4.\n",
|
207 |
+
"MoviePy - Writing audio in Ploumen_CO_51s_to_92_at_112TEMP_MPY_wvf_snd.mp4\n"
|
208 |
+
]
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"name": "stderr",
|
212 |
+
"output_type": "stream",
|
213 |
+
"text": [
|
214 |
+
" \r"
|
215 |
+
]
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"name": "stdout",
|
219 |
+
"output_type": "stream",
|
220 |
+
"text": [
|
221 |
+
"MoviePy - Done.\n",
|
222 |
+
"Moviepy - Writing video videos/Ploumen_CO_51s_to_92_at_112.mp4\n",
|
223 |
+
"\n"
|
224 |
+
]
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"name": "stderr",
|
228 |
+
"output_type": "stream",
|
229 |
+
"text": [
|
230 |
+
" \r"
|
231 |
+
]
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"name": "stdout",
|
235 |
+
"output_type": "stream",
|
236 |
+
"text": [
|
237 |
+
"Moviepy - Done !\n",
|
238 |
+
"Moviepy - video ready videos/Ploumen_CO_51s_to_92_at_112.mp4\n",
|
239 |
+
"Moviepy - Building video videos/Ploumen_CO_14s_to_98_at_0.mp4.\n",
|
240 |
+
"MoviePy - Writing audio in Ploumen_CO_14s_to_98_at_0TEMP_MPY_wvf_snd.mp4\n"
|
241 |
+
]
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"name": "stderr",
|
245 |
+
"output_type": "stream",
|
246 |
+
"text": [
|
247 |
+
" \r"
|
248 |
+
]
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"name": "stdout",
|
252 |
+
"output_type": "stream",
|
253 |
+
"text": [
|
254 |
+
"MoviePy - Done.\n",
|
255 |
+
"Moviepy - Writing video videos/Ploumen_CO_14s_to_98_at_0.mp4\n",
|
256 |
+
"\n"
|
257 |
+
]
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"name": "stderr",
|
261 |
+
"output_type": "stream",
|
262 |
+
"text": [
|
263 |
+
" \r"
|
264 |
+
]
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"name": "stdout",
|
268 |
+
"output_type": "stream",
|
269 |
+
"text": [
|
270 |
+
"Moviepy - Done !\n",
|
271 |
+
"Moviepy - video ready videos/Ploumen_CO_14s_to_98_at_0.mp4\n",
|
272 |
+
"Moviepy - Building video videos/Ploumen_CO_64s_to_85_at_53.mp4.\n",
|
273 |
+
"MoviePy - Writing audio in Ploumen_CO_64s_to_85_at_53TEMP_MPY_wvf_snd.mp4\n"
|
274 |
+
]
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"name": "stderr",
|
278 |
+
"output_type": "stream",
|
279 |
+
"text": [
|
280 |
+
" \r"
|
281 |
+
]
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"name": "stdout",
|
285 |
+
"output_type": "stream",
|
286 |
+
"text": [
|
287 |
+
"MoviePy - Done.\n",
|
288 |
+
"Moviepy - Writing video videos/Ploumen_CO_64s_to_85_at_53.mp4\n",
|
289 |
+
"\n"
|
290 |
+
]
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"name": "stderr",
|
294 |
+
"output_type": "stream",
|
295 |
+
"text": [
|
296 |
+
" \r"
|
297 |
+
]
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"name": "stdout",
|
301 |
+
"output_type": "stream",
|
302 |
+
"text": [
|
303 |
+
"Moviepy - Done !\n",
|
304 |
+
"Moviepy - video ready videos/Ploumen_CO_64s_to_85_at_53.mp4\n",
|
305 |
+
"Part Start = 63.0, Part Cutout = 27, Part Mid = 6, Part End = 54.03\n",
|
306 |
+
"Moviepy - Building video videos/Ploumen_CO_63s_to_90_at_96.mp4.\n",
|
307 |
+
"MoviePy - Writing audio in Ploumen_CO_63s_to_90_at_96TEMP_MPY_wvf_snd.mp4\n"
|
308 |
+
]
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"name": "stderr",
|
312 |
+
"output_type": "stream",
|
313 |
+
"text": [
|
314 |
+
" \r"
|
315 |
+
]
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"name": "stdout",
|
319 |
+
"output_type": "stream",
|
320 |
+
"text": [
|
321 |
+
"MoviePy - Done.\n",
|
322 |
+
"Moviepy - Writing video videos/Ploumen_CO_63s_to_90_at_96.mp4\n",
|
323 |
+
"\n"
|
324 |
+
]
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"name": "stderr",
|
328 |
+
"output_type": "stream",
|
329 |
+
"text": [
|
330 |
+
" \r"
|
331 |
+
]
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"name": "stdout",
|
335 |
+
"output_type": "stream",
|
336 |
+
"text": [
|
337 |
+
"Moviepy - Done !\n",
|
338 |
+
"Moviepy - video ready videos/Ploumen_CO_63s_to_90_at_96.mp4\n",
|
339 |
+
"Part Start = 63.0, Part Cutout = 33, Part Mid = 27, Part End = 27.03\n",
|
340 |
+
"Moviepy - Building video videos/Ploumen_CO_63s_to_96_at_123.mp4.\n",
|
341 |
+
"MoviePy - Writing audio in Ploumen_CO_63s_to_96_at_123TEMP_MPY_wvf_snd.mp4\n"
|
342 |
+
]
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"name": "stderr",
|
346 |
+
"output_type": "stream",
|
347 |
+
"text": [
|
348 |
+
" \r"
|
349 |
+
]
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"name": "stdout",
|
353 |
+
"output_type": "stream",
|
354 |
+
"text": [
|
355 |
+
"MoviePy - Done.\n",
|
356 |
+
"Moviepy - Writing video videos/Ploumen_CO_63s_to_96_at_123.mp4\n",
|
357 |
+
"\n"
|
358 |
+
]
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"name": "stderr",
|
362 |
+
"output_type": "stream",
|
363 |
+
"text": [
|
364 |
+
" \r"
|
365 |
+
]
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"name": "stdout",
|
369 |
+
"output_type": "stream",
|
370 |
+
"text": [
|
371 |
+
"Moviepy - Done !\n",
|
372 |
+
"Moviepy - video ready videos/Ploumen_CO_63s_to_96_at_123.mp4\n"
|
373 |
+
]
|
374 |
+
}
|
375 |
+
],
|
376 |
+
"source": [
|
377 |
+
"for pair, insert_s in zip(rand_pairs, rand_insert_s):\n",
|
378 |
+
" edit_change_order(\"videos/Ploumen.mp4\", start_s = pair[0], end_s = pair[1], insert_s = insert_s)"
|
379 |
+
]
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"cell_type": "code",
|
383 |
+
"execution_count": null,
|
384 |
+
"metadata": {},
|
385 |
+
"outputs": [],
|
386 |
+
"source": []
|
387 |
+
},
|
388 |
{
|
389 |
"cell_type": "code",
|
390 |
"execution_count": null,
|