videomatch / app.py
dodijk's picture
Refactor app.py into separate files
7971a7a
raw
history blame
8.55 kB
import logging
import time
import pandas
import gradio as gr
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from config import *
from videomatch import index_hashes_for_video, get_decent_distance, \
get_video_indices, compare_videos, get_change_points
logging.basicConfig()
logging.getLogger().setLevel(logging.INFO)
def plot_comparison(lims, D, I, hash_vectors, MIN_DISTANCE = 3):
sns.set_theme()
x = [(lims[i+1]-lims[i]) * [i] for i in range(hash_vectors.shape[0])]
x = [i/FPS for j in x for i in j]
y = [i/FPS for i in I]
# Create figure and dataframe to plot with sns
fig = plt.figure()
# plt.tight_layout()
df = pd.DataFrame(zip(x, y), columns = ['X', 'Y'])
g = sns.scatterplot(data=df, x='X', y='Y', s=2*(1-D/(MIN_DISTANCE+1)), alpha=1-D/MIN_DISTANCE)
# Set x-labels to be more readable
x_locs, x_labels = plt.xticks() # Get original locations and labels for x ticks
x_labels = [time.strftime('%H:%M:%S', time.gmtime(x)) for x in x_locs]
plt.xticks(x_locs, x_labels)
plt.xticks(rotation=90)
plt.xlabel('Time in source video (H:M:S)')
plt.xlim(0, None)
# Set y-labels to be more readable
y_locs, y_labels = plt.yticks() # Get original locations and labels for x ticks
y_labels = [time.strftime('%H:%M:%S', time.gmtime(y)) for y in y_locs]
plt.yticks(y_locs, y_labels)
plt.ylabel('Time in target video (H:M:S)')
# Adjust padding to fit gradio
plt.subplots_adjust(bottom=0.25, left=0.20)
return fig
def plot_multi_comparison(df, change_points):
""" From the dataframe plot the current set of plots, where the bottom right is most indicative """
fig, ax_arr = plt.subplots(3, 2, figsize=(12, 6), dpi=100, sharex=True)
sns.scatterplot(data = df, x='time', y='SOURCE_S', ax=ax_arr[0,0])
sns.lineplot(data = df, x='time', y='SOURCE_LIP_S', ax=ax_arr[0,1])
sns.scatterplot(data = df, x='time', y='OFFSET', ax=ax_arr[1,0])
sns.lineplot(data = df, x='time', y='OFFSET_LIP', ax=ax_arr[1,1])
# Plot change point as lines
sns.lineplot(data = df, x='time', y='OFFSET_LIP', ax=ax_arr[2,1])
for x in change_points:
cp_time = x.start_time
plt.vlines(x=cp_time, ymin=np.min(df['OFFSET_LIP']), ymax=np.max(df['OFFSET_LIP']), colors='red', lw=2)
rand_y_pos = np.random.uniform(low=np.min(df['OFFSET_LIP']), high=np.max(df['OFFSET_LIP']), size=None)
plt.text(x=cp_time, y=rand_y_pos, s=str(np.round(x.confidence, 2)), color='r', rotation=-0.0, fontsize=14)
plt.xticks(rotation=90)
return fig
def get_videomatch_df(url, target, min_distance=MIN_DISTANCE, vanilla_df=False):
distance = get_decent_distance(url, target, MIN_DISTANCE, MAX_DISTANCE)
video_index, hash_vectors, target_indices = get_video_indices(url, target, MIN_DISTANCE = distance)
lims, D, I, hash_vectors = compare_videos(hash_vectors, target_indices, MIN_DISTANCE = distance)
target = [(lims[i+1]-lims[i]) * [i] for i in range(hash_vectors.shape[0])]
target_s = [i/FPS for j in target for i in j]
source_s = [i/FPS for i in I]
# Make df
df = pd.DataFrame(zip(target_s, source_s, D, I), columns = ['TARGET_S', 'SOURCE_S', 'DISTANCE', 'INDICES'])
if vanilla_df:
return df
# Minimum distance dataframe ----
# Group by X so for every second/x there will be 1 value of Y in the end
# index_min_distance = df.groupby('TARGET_S')['DISTANCE'].idxmin()
# df_min = df.loc[index_min_distance]
# df_min
# -------------------------------
df['TARGET_WEIGHT'] = 1 - df['DISTANCE']/distance # Higher value means a better match
df['SOURCE_WEIGHTED_VALUE'] = df['SOURCE_S'] * df['TARGET_WEIGHT'] # Multiply the weight (which indicates a better match) with the value for Y and aggregate to get a less noisy estimate of Y
# Group by X so for every second/x there will be 1 value of Y in the end
grouped_X = df.groupby('TARGET_S').agg({'SOURCE_WEIGHTED_VALUE' : 'sum', 'TARGET_WEIGHT' : 'sum'})
grouped_X['FINAL_SOURCE_VALUE'] = grouped_X['SOURCE_WEIGHTED_VALUE'] / grouped_X['TARGET_WEIGHT']
# Remake the dataframe
df = grouped_X.reset_index()
df = df.drop(columns=['SOURCE_WEIGHTED_VALUE', 'TARGET_WEIGHT'])
df = df.rename({'FINAL_SOURCE_VALUE' : 'SOURCE_S'}, axis='columns')
# Add NAN to "missing" x values (base it off hash vector, not target_s)
step_size = 1/FPS
x_complete = np.round(np.arange(start=0.0, stop = max(df['TARGET_S'])+step_size, step = step_size), 1) # More robust
df['TARGET_S'] = np.round(df['TARGET_S'], 1)
df_complete = pd.DataFrame(x_complete, columns=['TARGET_S'])
# Merge dataframes to get NAN values for every missing SOURCE_S
df = df_complete.merge(df, on='TARGET_S', how='left')
# Interpolate between frames since there are missing values
df['SOURCE_LIP_S'] = df['SOURCE_S'].interpolate(method='linear', limit_direction='both', axis=0)
# Add timeshift col and timeshift col with Linearly Interpolated Values
df['TIMESHIFT'] = df['SOURCE_S'].shift(1) - df['SOURCE_S']
df['TIMESHIFT_LIP'] = df['SOURCE_LIP_S'].shift(1) - df['SOURCE_LIP_S']
# Add Offset col that assumes the video is played at the same speed as the other to do a "timeshift"
df['OFFSET'] = df['SOURCE_S'] - df['TARGET_S'] - np.min(df['SOURCE_S'])
df['OFFSET_LIP'] = df['SOURCE_LIP_S'] - df['TARGET_S'] - np.min(df['SOURCE_LIP_S'])
# Add time column for plotting
df['time'] = pd.to_datetime(df["TARGET_S"], unit='s') # Needs a datetime as input
return df
def get_comparison(url, target, MIN_DISTANCE = 4):
""" Function for Gradio to combine all helper functions"""
video_index, hash_vectors, target_indices = get_video_indices(url, target, MIN_DISTANCE = MIN_DISTANCE)
lims, D, I, hash_vectors = compare_videos(hash_vectors, target_indices, MIN_DISTANCE = MIN_DISTANCE)
fig = plot_comparison(lims, D, I, hash_vectors, MIN_DISTANCE = MIN_DISTANCE)
return fig
def get_auto_comparison(url, target, smoothing_window_size=10, method="CUSUM"):
""" Function for Gradio to combine all helper functions"""
distance = get_decent_distance(url, target, MIN_DISTANCE, MAX_DISTANCE)
if distance == None:
raise gr.Error("No matches found!")
video_index, hash_vectors, target_indices = get_video_indices(url, target, MIN_DISTANCE = distance)
lims, D, I, hash_vectors = compare_videos(hash_vectors, target_indices, MIN_DISTANCE = distance)
# fig = plot_comparison(lims, D, I, hash_vectors, MIN_DISTANCE = distance)
df = get_videomatch_df(url, target, min_distance=MIN_DISTANCE, vanilla_df=False)
change_points = get_change_points(df, smoothing_window_size=smoothing_window_size, method=method)
fig = plot_multi_comparison(df, change_points)
return fig
video_urls = ["https://www.dropbox.com/s/8c89a9aba0w8gjg/Ploumen.mp4?dl=1",
"https://www.dropbox.com/s/rzmicviu1fe740t/Bram%20van%20Ojik%20krijgt%20reprimande.mp4?dl=1",
"https://www.dropbox.com/s/wcot34ldmb84071/Baudet%20ontmaskert%20Omtzigt_%20u%20bent%20door%20de%20mand%20gevallen%21.mp4?dl=1",
"https://drive.google.com/uc?id=1XW0niHR1k09vPNv1cp6NvdGXe7FHJc1D&export=download",
"https://www.dropbox.com/s/4ognq8lshcujk43/Plenaire_zaal_20200923132426_Omtzigt.mp4?dl=1"]
index_iface = gr.Interface(fn=lambda url: index_hashes_for_video(url).ntotal,
inputs="text",
outputs="text",
examples=video_urls, cache_examples=True)
compare_iface = gr.Interface(fn=get_comparison,
inputs=["text", "text", gr.Slider(2, 30, 4, step=2)],
outputs="plot",
examples=[[x, video_urls[-1]] for x in video_urls[:-1]])
auto_compare_iface = gr.Interface(fn=get_auto_comparison,
inputs=["text", "text", gr.Slider(1, 50, 10, step=1), gr.Dropdown(choices=["CUSUM", "Robust"], value="CUSUM")],
outputs="plot",
examples=[[x, video_urls[-1]] for x in video_urls[:-1]])
iface = gr.TabbedInterface([auto_compare_iface, compare_iface, index_iface,], ["AutoCompare", "Compare", "Index"])
if __name__ == "__main__":
import matplotlib
matplotlib.use('SVG') # To be able to plot in gradio
iface.launch(inbrowser=True, debug=True)
#iface.launch(auth=("test", "test"), share=True, debug=True)