Spaces:
Build error
Build error
File size: 7,249 Bytes
f849799 7f2c8f8 3b3290d f849799 3b3290d f849799 3b3290d f849799 7f2c8f8 f849799 3b3290d f849799 7f2c8f8 f849799 7f2c8f8 f849799 3b3290d f849799 3b3290d f849799 7f2c8f8 3b3290d f849799 7f2c8f8 3b3290d f849799 7f2c8f8 3b3290d 7f2c8f8 3b3290d f849799 7f2c8f8 f849799 7f2c8f8 f849799 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import tempfile
import urllib.request
import logging
import os
import hashlib
import datetime
import time
import pandas
import gradio as gr
from moviepy.editor import VideoFileClip
import seaborn as sns
import matplotlib.pyplot as plt
import imagehash
from PIL import Image
import numpy as np
import pandas as pd
import faiss
FPS = 5
video_directory = tempfile.gettempdir()
def download_video_from_url(url):
"""Download video from url or return md5 hash as video name"""
filename = os.path.join(video_directory, hashlib.md5(url.encode()).hexdigest())
if not os.path.exists(filename):
with (urllib.request.urlopen(url)) as f, open(filename, 'wb') as fileout:
fileout.write(f.read())
logging.info(f"Downloaded video from {url} to {filename}.")
else:
logging.info(f"Skipping downloading from {url} because {filename} already exists.")
return filename
def change_ffmpeg_fps(clip, fps=FPS):
# Hacking the ffmpeg call based on
# https://github.com/Zulko/moviepy/blob/master/moviepy/video/io/ffmpeg_reader.py#L126
import subprocess as sp
cmd = [arg + ",fps=%d" % fps if arg.startswith("scale=") else arg for arg in clip.reader.proc.args]
clip.reader.close()
clip.reader.proc = sp.Popen(cmd, bufsize=clip.reader.bufsize,
stdout=sp.PIPE, stderr=sp.PIPE, stdin=sp.DEVNULL)
clip.fps = clip.reader.fps = fps
clip.reader.lastread = clip.reader.read_frame()
return clip
def compute_hash(frame, hash_size=16):
image = Image.fromarray(np.array(frame))
return imagehash.phash(image, hash_size)
def binary_array_to_uint8s(arr):
bit_string = ''.join(str(1 * x) for l in arr for x in l)
return [int(bit_string[i:i+8], 2) for i in range(0, len(bit_string), 8)]
def compute_hashes(clip, fps=FPS):
for index, frame in enumerate(change_ffmpeg_fps(clip, fps).iter_frames()):
# Each frame is a triplet of size (height, width, 3) of the video since it is RGB
# The hash itself is of size (hash_size, hash_size)
# The uint8 version of the hash is of size (hash_size * highfreq_factor,) and represents the hash
hashed = np.array(binary_array_to_uint8s(compute_hash(frame).hash), dtype='uint8')
yield {"frame": 1+index*fps, "hash": hashed}
def index_hashes_for_video(url):
filename = download_video_from_url(url)
if os.path.exists(f'{filename}.index'):
logging.info(f"Loading indexed hashes from {filename}.index")
binary_index = faiss.read_index_binary(f'{filename}.index')
logging.info(f"Index {filename}.index has in total {binary_index.ntotal} frames")
return binary_index
hash_vectors = np.array([x['hash'] for x in compute_hashes(VideoFileClip(filename))])
logging.info(f"Computed hashes for {hash_vectors.shape} frames.")
# Initializing the quantizer.
quantizer = faiss.IndexBinaryFlat(hash_vectors.shape[1]*8)
# Initializing index.
index = faiss.IndexBinaryIVF(quantizer, hash_vectors.shape[1]*8, min(16, hash_vectors.shape[0]))
index.nprobe = 1 # Number of nearest clusters to be searched per query.
# Training the quantizer.
index.train(hash_vectors)
#index = faiss.IndexBinaryFlat(64)
index.add(hash_vectors)
faiss.write_index_binary(index, f'{filename}.index')
logging.info(f"Indexed hashes for {index.ntotal} frames to {filename}.index.")
return index
def compare_videos(url, target, MIN_DISTANCE = 3):
"""" The comparison between the target and the original video will be plotted based
on the matches between the target and the original video over time. The matches are determined
based on the minimum distance between hashes (as computed by faiss-vectors) before they're considered a match.
args:
- url: url of the source video you want to check for overlap with the target video
- target: url of the target video
- MIN_DISTANCE: integer representing the minimum distance between hashes on bit-level before its considered a match
"""
# TODO: Fix crash if no matches are found
# Url (short video)
video_index = index_hashes_for_video(url)
video_index.make_direct_map() # Make sure the index is indexable
hash_vectors = np.array([video_index.reconstruct(i) for i in range(video_index.ntotal)]) # Retrieve original indices
# Target video (long video)
target_indices = [index_hashes_for_video(x) for x in [target]]
# The results are returned as a triplet of 1D arrays
# lims, D, I, where result for query i is in I[lims[i]:lims[i+1]]
# (indices of neighbors), D[lims[i]:lims[i+1]] (distances).
lims, D, I = target_indices[0].range_search(hash_vectors, MIN_DISTANCE)
return plot_comparison(lims, D, I, hash_vectors, MIN_DISTANCE = MIN_DISTANCE)
def plot_comparison(lims, D, I, hash_vectors, MIN_DISTANCE = 3):
sns.set_theme()
x = [(lims[i+1]-lims[i]) * [i] for i in range(hash_vectors.shape[0])]
x = [i/FPS for j in x for i in j]
y = [i/FPS for i in I]
# Create figure and dataframe to plot with sns
fig = plt.figure()
# plt.tight_layout()
df = pd.DataFrame(zip(x, y), columns = ['X', 'Y'])
g = sns.scatterplot(data=df, x='X', y='Y', s=2*(1-D/(MIN_DISTANCE+1)), alpha=1-D/MIN_DISTANCE)
# Set x-labels to be more readable
x_locs, x_labels = plt.xticks() # Get original locations and labels for x ticks
x_labels = [time.strftime('%H:%M:%S', time.gmtime(x)) for x in x_locs]
plt.xticks(x_locs, x_labels)
plt.xticks(rotation=90)
plt.xlabel('Time in source video (H:M:S)')
plt.xlim(0, None)
# Set y-labels to be more readable
y_locs, y_labels = plt.yticks() # Get original locations and labels for x ticks
y_labels = [time.strftime('%H:%M:%S', time.gmtime(y)) for y in y_locs]
plt.yticks(y_locs, y_labels)
plt.ylabel('Time in target video (H:M:S)')
# Adjust padding to fit gradio
plt.subplots_adjust(bottom=0.25, left=0.20)
return fig
logging.basicConfig()
logging.getLogger().setLevel(logging.DEBUG)
video_urls = ["https://www.dropbox.com/s/8c89a9aba0w8gjg/Ploumen.mp4?dl=1",
"https://www.dropbox.com/s/rzmicviu1fe740t/Bram%20van%20Ojik%20krijgt%20reprimande.mp4?dl=1",
"https://www.dropbox.com/s/wcot34ldmb84071/Baudet%20ontmaskert%20Omtzigt_%20u%20bent%20door%20de%20mand%20gevallen%21.mp4?dl=1",
"https://www.dropbox.com/s/4ognq8lshcujk43/Plenaire_zaal_20200923132426_Omtzigt.mp4?dl=1"]
index_iface = gr.Interface(fn=lambda url: index_hashes_for_video(url).ntotal,
inputs="text", outputs="text",
examples=video_urls, cache_examples=True)
compare_iface = gr.Interface(fn=compare_videos,
inputs=["text", "text", gr.Slider(1, 25, 3, step=1)], outputs="plot",
examples=[[x, video_urls[-1]] for x in video_urls[:-1]])
iface = gr.TabbedInterface([index_iface, compare_iface], ["Index", "Compare"])
if __name__ == "__main__":
import matplotlib
matplotlib.use('SVG')
logging.basicConfig()
logging.getLogger().setLevel(logging.DEBUG)
iface.launch()
#iface.launch(auth=("test", "test"), share=True, debug=True) |