File size: 7,249 Bytes
f849799
 
 
 
 
7f2c8f8
3b3290d
f849799
 
 
 
 
3b3290d
 
 
f849799
 
 
 
3b3290d
f849799
 
7f2c8f8
f849799
 
 
 
 
 
 
 
 
 
3b3290d
 
f849799
 
7f2c8f8
f849799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f2c8f8
f849799
3b3290d
 
 
f849799
 
 
 
 
 
3b3290d
 
 
 
f849799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f2c8f8
 
 
 
 
 
 
 
 
 
 
 
3b3290d
f849799
7f2c8f8
 
 
3b3290d
 
 
f849799
 
 
7f2c8f8
 
3b3290d
 
 
 
7f2c8f8
 
3b3290d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f849799
 
 
 
 
 
 
 
 
 
 
7f2c8f8
f849799
 
 
 
 
7f2c8f8
 
 
 
 
 
f849799
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import tempfile
import urllib.request
import logging
import os
import hashlib
import datetime
import time

import pandas
import gradio as gr
from moviepy.editor import VideoFileClip

import seaborn as sns
import matplotlib.pyplot as plt

import imagehash
from PIL import Image

import numpy as np
import pandas as pd
import faiss

FPS = 5

video_directory = tempfile.gettempdir()

def download_video_from_url(url):
    """Download video from url or return md5 hash as video name"""
    filename = os.path.join(video_directory, hashlib.md5(url.encode()).hexdigest())
    if not os.path.exists(filename):
        with (urllib.request.urlopen(url)) as f, open(filename, 'wb') as fileout:
            fileout.write(f.read())
        logging.info(f"Downloaded video from {url} to {filename}.")
    else:
        logging.info(f"Skipping downloading from {url} because {filename} already exists.")
    return filename

def change_ffmpeg_fps(clip, fps=FPS):
    # Hacking the ffmpeg call based on 
    # https://github.com/Zulko/moviepy/blob/master/moviepy/video/io/ffmpeg_reader.py#L126
    import subprocess as sp

    cmd = [arg + ",fps=%d" % fps if arg.startswith("scale=") else arg for arg in clip.reader.proc.args]
    clip.reader.close()
    clip.reader.proc = sp.Popen(cmd, bufsize=clip.reader.bufsize, 
                                stdout=sp.PIPE, stderr=sp.PIPE, stdin=sp.DEVNULL)
    clip.fps = clip.reader.fps = fps
    clip.reader.lastread = clip.reader.read_frame()
    return clip

def compute_hash(frame, hash_size=16):
    image = Image.fromarray(np.array(frame))
    return imagehash.phash(image, hash_size)

def binary_array_to_uint8s(arr):
    bit_string = ''.join(str(1 * x) for l in arr for x in l)
    return [int(bit_string[i:i+8], 2) for i in range(0, len(bit_string), 8)]

def compute_hashes(clip, fps=FPS):
    for index, frame in enumerate(change_ffmpeg_fps(clip, fps).iter_frames()):
        # Each frame is a triplet of size (height, width, 3) of the video since it is RGB
        # The hash itself is of size (hash_size, hash_size)
        # The uint8 version of the hash is of size (hash_size * highfreq_factor,) and represents the hash
        hashed = np.array(binary_array_to_uint8s(compute_hash(frame).hash), dtype='uint8')
        yield {"frame": 1+index*fps, "hash": hashed}

def index_hashes_for_video(url):
    filename = download_video_from_url(url)
    if os.path.exists(f'{filename}.index'):
        logging.info(f"Loading indexed hashes from {filename}.index")
        binary_index = faiss.read_index_binary(f'{filename}.index') 
        logging.info(f"Index {filename}.index has in total {binary_index.ntotal} frames")
        return binary_index

    hash_vectors = np.array([x['hash'] for x in compute_hashes(VideoFileClip(filename))])
    logging.info(f"Computed hashes for {hash_vectors.shape} frames.")

    # Initializing the quantizer.
    quantizer = faiss.IndexBinaryFlat(hash_vectors.shape[1]*8)
    # Initializing index.
    index = faiss.IndexBinaryIVF(quantizer, hash_vectors.shape[1]*8, min(16, hash_vectors.shape[0]))
    index.nprobe = 1 # Number of nearest clusters to be searched per query. 
    # Training the quantizer.
    index.train(hash_vectors)
    #index = faiss.IndexBinaryFlat(64)
    index.add(hash_vectors)
    faiss.write_index_binary(index, f'{filename}.index')
    logging.info(f"Indexed hashes for {index.ntotal} frames to {filename}.index.")
    return index

def compare_videos(url, target, MIN_DISTANCE = 3):
    """" The comparison between the target and the original video will be plotted based
    on the matches between the target and the original video over time. The matches are determined
    based on the minimum distance between hashes (as computed by faiss-vectors) before they're considered a match. 
    
    args: 
    - url: url of the source video you want to check for overlap with the target video
    - target: url of the target video
    - MIN_DISTANCE: integer representing the minimum distance between hashes on bit-level before its considered a match
    """
    # TODO: Fix crash if no matches are found

    # Url (short video) 
    video_index = index_hashes_for_video(url)
    video_index.make_direct_map() # Make sure the index is indexable
    hash_vectors = np.array([video_index.reconstruct(i) for i in range(video_index.ntotal)]) # Retrieve original indices
    
    # Target video (long video)
    target_indices = [index_hashes_for_video(x) for x in [target]]
    
    # The results are returned as a triplet of 1D arrays 
    # lims, D, I, where result for query i is in I[lims[i]:lims[i+1]] 
    # (indices of neighbors), D[lims[i]:lims[i+1]] (distances).
    lims, D, I = target_indices[0].range_search(hash_vectors, MIN_DISTANCE)

    return plot_comparison(lims, D, I, hash_vectors, MIN_DISTANCE = MIN_DISTANCE)

def plot_comparison(lims, D, I, hash_vectors, MIN_DISTANCE = 3):
    sns.set_theme()

    x = [(lims[i+1]-lims[i]) * [i] for i in range(hash_vectors.shape[0])]
    x = [i/FPS for j in x for i in j]
    y = [i/FPS for i in I]
    
    # Create figure and dataframe to plot with sns
    fig = plt.figure()
    # plt.tight_layout()
    df = pd.DataFrame(zip(x, y), columns = ['X', 'Y'])
    g = sns.scatterplot(data=df, x='X', y='Y', s=2*(1-D/(MIN_DISTANCE+1)), alpha=1-D/MIN_DISTANCE)

    # Set x-labels to be more readable
    x_locs, x_labels = plt.xticks() # Get original locations and labels for x ticks
    x_labels = [time.strftime('%H:%M:%S', time.gmtime(x)) for x in x_locs]
    plt.xticks(x_locs, x_labels)
    plt.xticks(rotation=90)
    plt.xlabel('Time in source video (H:M:S)')
    plt.xlim(0, None)

    # Set y-labels to be more readable
    y_locs, y_labels = plt.yticks() # Get original locations and labels for x ticks
    y_labels = [time.strftime('%H:%M:%S', time.gmtime(y)) for y in y_locs]
    plt.yticks(y_locs, y_labels)
    plt.ylabel('Time in target video (H:M:S)')

    # Adjust padding to fit gradio
    plt.subplots_adjust(bottom=0.25, left=0.20)
    return fig 

logging.basicConfig()
logging.getLogger().setLevel(logging.DEBUG)

video_urls = ["https://www.dropbox.com/s/8c89a9aba0w8gjg/Ploumen.mp4?dl=1",
              "https://www.dropbox.com/s/rzmicviu1fe740t/Bram%20van%20Ojik%20krijgt%20reprimande.mp4?dl=1",
              "https://www.dropbox.com/s/wcot34ldmb84071/Baudet%20ontmaskert%20Omtzigt_%20u%20bent%20door%20de%20mand%20gevallen%21.mp4?dl=1",
              "https://www.dropbox.com/s/4ognq8lshcujk43/Plenaire_zaal_20200923132426_Omtzigt.mp4?dl=1"]

index_iface = gr.Interface(fn=lambda url: index_hashes_for_video(url).ntotal, 
                     inputs="text", outputs="text", 
                     examples=video_urls, cache_examples=True)

compare_iface = gr.Interface(fn=compare_videos,
                     inputs=["text", "text", gr.Slider(1, 25, 3, step=1)], outputs="plot", 
                     examples=[[x, video_urls[-1]] for x in video_urls[:-1]])

iface = gr.TabbedInterface([index_iface, compare_iface], ["Index", "Compare"])

if __name__ == "__main__":
    import matplotlib
    matplotlib.use('SVG')

    logging.basicConfig()
    logging.getLogger().setLevel(logging.DEBUG)

    iface.launch()
    #iface.launch(auth=("test", "test"), share=True, debug=True)