import cv2, os, math import torch import random import numpy as np import spaces import PIL from PIL import Image from typing import Tuple import diffusers from diffusers.utils import load_image from diffusers import ( AutoencoderKL, UNet2DConditionModel, UniPCMultistepScheduler, ) from huggingface_hub import hf_hub_download from insightface.app import FaceAnalysis from pipeline_controlnet_xs_sd_xl_instantid import StableDiffusionXLInstantIDXSPipeline, UNetControlNetXSModel from utils.controlnet_xs import ControlNetXSAdapter from style import styles import gradio as gr hf_hub_download(repo_id="RED-AIGC/InstantID-XS", filename="controlnetxs.bin", local_dir="./ckpt") hf_hub_download(repo_id="RED-AIGC/InstantID-XS",filename="cross_attn.bin",local_dir="./ckpt",) hf_hub_download(repo_id="RED-AIGC/InstantID-XS", filename="image_proj.bin", local_dir="./ckpt") # global variable MAX_SEED = np.iinfo(np.int32).max device = "cuda" if torch.cuda.is_available() else "cpu" weight_dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32 STYLE_NAMES = list(styles.keys()) DEFAULT_STYLE_NAME = "Ordinary" base_model = 'frankjoshua/realvisxlV40_v40Bakedvae' vae_path = 'madebyollin/sdxl-vae-fp16-fix' # ckpt = 'RED-AIGC/InstantID-XS' image_proj_path = "./ckpt/image_proj.bin" cnxs_path = "./ckpt/controlnetxs.bin" cross_attn_path = "./ckpt/cross_attn.bin" # Load face encoder app = FaceAnalysis( name="antelopev2", root="./", providers=["CPUExecutionProvider"], ) app.prepare(ctx_id=0, det_size=(640, 640)) def get_ControlNetXS(base_model, cnxs_path, device, size_ratio=0.125, weight_dtype=torch.float16): unet = UNet2DConditionModel.from_pretrained(base_model, subfolder="unet").to(device, dtype=weight_dtype) controlnet = ControlNetXSAdapter.from_unet(unet, size_ratio=size_ratio, learn_time_embedding=True) state_dict = torch.load(cnxs_path, map_location="cpu", weights_only=True) ctrl_state_dict = {} for key, value in state_dict.items(): if 'attn2.processor' not in key: if 'ctrl_' in key and 'ctrl_to_base' not in key: key = key.replace('ctrl_', '') if 'up_blocks' in key: key = key.replace('up_blocks', 'up_connections') ctrl_state_dict[key] = value controlnet.load_state_dict(ctrl_state_dict, strict=True) controlnet.to(device, dtype=weight_dtype) ControlNetXS = UNetControlNetXSModel.from_unet(unet, controlnet).to(device, dtype=weight_dtype) return ControlNetXS print('Get ControlNetXS...') ControlNetXS = get_ControlNetXS(base_model, cnxs_path, device, size_ratio=0.125, weight_dtype=weight_dtype) vae = AutoencoderKL.from_pretrained(vae_path) print('Get Pipeline...') pipe = StableDiffusionXLInstantIDXSPipeline.from_pretrained( base_model, vae=vae, unet=ControlNetXS, controlnet=None, torch_dtype=weight_dtype, ) # pipe.cuda(device=device, dtype=weight_dtype, use_xformers=True) pipe.cuda(device=device, dtype=weight_dtype, use_xformers=False) print('Load IP-Adapter...') pipe.load_ip_adapter(image_proj_path, cross_attn_path) pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.unet.config.ctrl_learn_time_embedding = True pipe = pipe.to(device) def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def remove_tips(): return gr.update(visible=False) def get_example(): case = [ [ "./examples/1.jpg", None, "Ordinary", "a woman", "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", ], [ "./examples/1.jpg", "./examples/pose/pose1.jpg", "Hanfu", "a woman", "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", ], [ "./examples/2.jpg", "./examples/pose/pose2.png", "ZangZu", "a woman", "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", ], [ "./examples/3.png", "./examples/pose/pose3.png", "QingQiu", "a woman", "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", ], ] return case def convert_from_cv2_to_image(img: np.ndarray) -> Image: return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) def convert_from_image_to_cv2(img: Image) -> np.ndarray: return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]): stickwidth = 4 limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]]) kps = np.array(kps) w, h = image_pil.size out_img = np.zeros([h, w, 3]) for i in range(len(limbSeq)): index = limbSeq[i] color = color_list[index[0]] x = kps[index][:, 0] y = kps[index][:, 1] length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5 angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1])) polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1) out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color) out_img = (out_img * 0.6).astype(np.uint8) for idx_kp, kp in enumerate(kps): color = color_list[idx_kp] x, y = kp out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1) out_img_pil = PIL.Image.fromarray(out_img.astype(np.uint8)) return out_img_pil def resize_img(input_image,max_side=1280,min_side=1024,size=None,pad_to_max_side=False,mode=PIL.Image.BILINEAR,base_pixel_number=64,): w, h = input_image.size if size is not None: w_resize_new, h_resize_new = size else: ratio = min_side / min(h, w) w, h = round(ratio * w), round(ratio * h) ratio = max_side / max(h, w) input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode) w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number input_image = input_image.resize([w_resize_new, h_resize_new], mode) if pad_to_max_side: res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 offset_x = (max_side - w_resize_new) // 2 offset_y = (max_side - h_resize_new) // 2 res[ offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new ] = np.array(input_image) input_image = Image.fromarray(res) return input_image def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]: p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) return p.replace("{prompt}", positive), n + ' ' + negative def run_for_examples(face_file, pose_file, style, prompt, negative_prompt, ): return generate_image( face_file, pose_file, style, prompt, negative_prompt, 20, # num_steps 0.9, # ControlNet strength 0.8, # Adapter strength 5.0, # guidance_scale 42, # seed 1280, # max side ) @spaces.GPU def generate_image( face_image_path, pose_image_path, style_name, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, adapter_strength_ratio, guidance_scale, seed, max_side, progress=gr.Progress(track_tqdm=True), ): if face_image_path is None: raise gr.Error(f"Cannot find any input face image! Please upload the face image") if prompt is None: prompt = "a person" # apply the style template prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt) face_image = load_image(face_image_path) face_image = resize_img(face_image, max_side=max_side) # face_image = resize_img(face_image) face_image_cv2 = convert_from_image_to_cv2(face_image) height, width, _ = face_image_cv2.shape # Extract face features face_info = app.get(face_image_cv2) if len(face_info) == 0: raise gr.Error(f"Unable to detect a face in the image. Please upload a different photo with a clear face.") face_info = sorted( face_info, key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1], )[-1] # only use the maximum face face_emb = torch.from_numpy(face_info.normed_embedding) face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"]) if pose_image_path is not None: pose_image = load_image(pose_image_path) pose_image = resize_img(pose_image, max_side=max_side) # pose_image = resize_img(pose_image) pose_image_cv2 = convert_from_image_to_cv2(pose_image) face_info = app.get(pose_image_cv2) if len(face_info) == 0: raise gr.Error(f"Cannot find any face in the reference image! Please upload another person image") face_info = face_info[-1] face_kps = draw_kps(pose_image, face_info["kps"]) width, height = face_kps.size print(width, height) print("Start inference...") print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}") # pipe.set_ip_adapter_scale(adapter_strength_ratio) images = pipe( prompt=prompt, negative_prompt=negative_prompt, image=face_kps, face_emb=face_emb, controlnet_conditioning_scale=float(controlnet_conditioning_scale), ip_adapter_scale=float(adapter_strength_ratio), num_inference_steps=num_steps, guidance_scale=float(guidance_scale), height=height, width=width, generator=torch.Generator(device=device).manual_seed(seed), ).images return images[0], gr.update(visible=True) title = r"""