Spaces:
Sleeping
Sleeping
QuophyDzifa
commited on
Commit
•
1d06340
1
Parent(s):
9b3e9ef
Delete src/main.py
Browse files- src/main.py +0 -109
src/main.py
DELETED
@@ -1,109 +0,0 @@
|
|
1 |
-
|
2 |
-
# Importations
|
3 |
-
|
4 |
-
from typing import Union
|
5 |
-
from fastapi import FastAPI
|
6 |
-
import pickle
|
7 |
-
from pydantic import BaseModel
|
8 |
-
import pandas as pd
|
9 |
-
import os
|
10 |
-
import uvicorn
|
11 |
-
from fastapi import HTTPException, status
|
12 |
-
from sklearn.preprocessing import StandardScaler
|
13 |
-
from sklearn.preprocessing import LabelEncoder
|
14 |
-
|
15 |
-
# Setup Section
|
16 |
-
|
17 |
-
# Create FastAPI instance
|
18 |
-
app = FastAPI(title="Sepsis Prediction API",
|
19 |
-
description="API for Predicting Sespsis ")
|
20 |
-
# A function to load machine Learning components to re-use
|
21 |
-
|
22 |
-
|
23 |
-
def Ml_loading_components(fp):
|
24 |
-
with open(fp, "rb") as f:
|
25 |
-
object = pickle.load(f)
|
26 |
-
return (object)
|
27 |
-
|
28 |
-
|
29 |
-
# Loading the machine learning components
|
30 |
-
DIRPATH = os.path.dirname(os.path.realpath(__file__))
|
31 |
-
ml_core_fp = os.path.join(DIRPATH, "ML", "ML_Model.pkl")
|
32 |
-
ml_components_dict = Ml_loading_components(fp=ml_core_fp)
|
33 |
-
|
34 |
-
|
35 |
-
# Defining the variables for each component
|
36 |
-
label_encoder = ml_components_dict['label_encoder'] # The label encoder
|
37 |
-
# Loaded scaler component
|
38 |
-
scaler = ml_components_dict['scaler']
|
39 |
-
# Loaded model
|
40 |
-
model = ml_components_dict['model']
|
41 |
-
# Defining our input variables
|
42 |
-
|
43 |
-
|
44 |
-
class InputData(BaseModel):
|
45 |
-
PRG: int
|
46 |
-
PL: int
|
47 |
-
BP: int
|
48 |
-
SK: int
|
49 |
-
TS: int
|
50 |
-
BMI: float
|
51 |
-
BD2: float
|
52 |
-
Age: int
|
53 |
-
|
54 |
-
|
55 |
-
"""
|
56 |
-
* PRG: Plasma glucose
|
57 |
-
|
58 |
-
* PL: Blood Work Result-1 (mu U/ml)
|
59 |
-
|
60 |
-
* PR: Blood Pressure (mmHg)
|
61 |
-
|
62 |
-
* SK: Blood Work Result-2(mm)
|
63 |
-
|
64 |
-
* TS: Blood Work Result-3 (muU/ml)
|
65 |
-
|
66 |
-
* M11: Body mass index (weight in kg/(height in m)^2
|
67 |
-
|
68 |
-
* BD2: Blood Work Result-4 (mu U/ml)
|
69 |
-
|
70 |
-
* Age: patients age(years)
|
71 |
-
|
72 |
-
"""
|
73 |
-
# Index route
|
74 |
-
|
75 |
-
|
76 |
-
@app.get("/")
|
77 |
-
def index():
|
78 |
-
return {'message': 'Hello, Welcome to My Sepsis Prediction FastAPI'}
|
79 |
-
|
80 |
-
|
81 |
-
# Create prediction endpoint
|
82 |
-
@app.post("/predict")
|
83 |
-
def predict(df: InputData):
|
84 |
-
|
85 |
-
# Prepare the feature and structure them like in the notebook
|
86 |
-
df = pd.DataFrame([df.dict().values()], columns=df.dict().keys())
|
87 |
-
|
88 |
-
print(f"[Info] The inputed dataframe is : {df.to_markdown()}")
|
89 |
-
age = df['Age']
|
90 |
-
print(age)
|
91 |
-
# Scaling the inputs
|
92 |
-
df_scaled = scaler.transform(df)
|
93 |
-
|
94 |
-
# Prediction
|
95 |
-
raw_prediction = model.predict(df_scaled)
|
96 |
-
|
97 |
-
if raw_prediction == 0:
|
98 |
-
raise HTTPException(status_code=status.HTTP_200_OK,
|
99 |
-
detail="The patient will Not Develop Sepsis")
|
100 |
-
elif raw_prediction == 1:
|
101 |
-
raise HTTPException(status_code=status.HTTP_200_OK,
|
102 |
-
detail="The patient Will Develop Sepsis")
|
103 |
-
else:
|
104 |
-
raise HTTPException(
|
105 |
-
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail="Prediction Error")
|
106 |
-
|
107 |
-
|
108 |
-
if __name__ == "__main__":
|
109 |
-
uvicorn.run("main:app", reload=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|