File size: 7,080 Bytes
cd51b0f
 
 
c4b9526
c3d86d3
 
 
 
 
 
 
 
cd51b0f
c3d86d3
c4b9526
cd51b0f
031bc5a
 
 
cc0fe39
92a440c
0646ffe
92a440c
 
 
 
 
 
 
 
 
cd51b0f
92a440c
39cc970
c3d86d3
cd51b0f
c3d86d3
 
 
 
 
 
 
 
 
39cc970
c3d86d3
cd51b0f
c3d86d3
 
 
 
 
 
 
 
 
39cc970
c3d86d3
 
 
 
 
 
cd51b0f
c3d86d3
 
 
39cc970
cd51b0f
 
 
 
39cc970
cd51b0f
6715980
d31d6fc
c3d86d3
d31d6fc
 
cd51b0f
 
6715980
d31d6fc
c3d86d3
d31d6fc
 
cd51b0f
c3d86d3
 
cd51b0f
c3d86d3
 
 
 
cd51b0f
c3d86d3
 
cd51b0f
c3d86d3
 
 
 
cd51b0f
c3d86d3
cd51b0f
c3d86d3
 
 
 
 
 
 
 
 
cd51b0f
c3d86d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd51b0f
c3d86d3
 
 
 
 
 
 
 
 
 
 
cd51b0f
c3d86d3
d31d6fc
c3d86d3
ad181b3
 
 
6715980
c3d86d3
 
 
 
cd51b0f
e68d5ed
 
 
c3d86d3
 
 
 
 
 
cd51b0f
c3d86d3
 
 
cd51b0f
c3d86d3
 
 
 
 
 
 
 
 
 
 
 
 
 
6715980
c3d86d3
 
 
 
6715980
c3d86d3
 
 
78bce4d
cd51b0f
c3d86d3
cd51b0f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
os.environ['NUMPY_EXPERIMENTAL_ARRAY_FUNCTION'] = '0'

import gradio as gr
import torch
import torchaudio
from whisperspeech.vq_stoks import RQBottleneckTransformer
from encodec.utils import convert_audio
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
from threading import Thread
import logging
from generate_audio import TTSProcessor
import uuid

device = "cpu"
vq_model = RQBottleneckTransformer.load_model(
        "whisper-vq-stoks-medium-en+pl-fixed.model"
    ).to(device)

use_8bit = False    
llm_path = "QuietImpostor/Llama-3.2s-1B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(llm_path)
model_kwargs = {}
if use_8bit:
    model_kwargs["quantization_config"] = BitsAndBytesConfig(
        load_in_8bit=True,
        llm_int8_enable_fp32_cpu_offload=False,
        llm_int8_has_fp16_weight=False,
    )
else:
    model_kwargs["torch_dtype"] = torch.float32
model = AutoModelForCausalLM.from_pretrained(llm_path, **model_kwargs).to(device)

def audio_to_sound_tokens_whisperspeech(audio_path):
    vq_model.ensure_whisper(device)
    wav, sr = torchaudio.load(audio_path)
    if sr != 16000:
        wav = torchaudio.functional.resample(wav, sr, 16000)
    with torch.no_grad():
        codes = vq_model.encode_audio(wav.to(device))
        codes = codes[0].cpu().tolist()
    
    result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
    return f'<|sound_start|>{result}<|sound_end|>'

def audio_to_sound_tokens_whisperspeech_transcribe(audio_path):
    vq_model.ensure_whisper(device)
    wav, sr = torchaudio.load(audio_path)
    if sr != 16000:
        wav = torchaudio.functional.resample(wav, sr, 16000)
    with torch.no_grad():
        codes = vq_model.encode_audio(wav.to(device))
        codes = codes[0].cpu().tolist()
    
    result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
    return f'<|reserved_special_token_69|><|sound_start|>{result}<|sound_end|>'

def text_to_audio_file(text):
    id = str(uuid.uuid4())
    temp_file = f"./user_audio/{id}_temp_audio.wav"
    text_split = "_".join(text.lower().split(" "))  
    if text_split[-1] == ".":
        text_split = text_split[:-1]
    tts = TTSProcessor(device)
    tts.convert_text_to_audio_file(text, temp_file)
    print(f"Saved audio to {temp_file}")
    return temp_file

def run_on_cpu(func):
    def wrapper(*args, **kwargs):
        return func(*args, **kwargs)
    return wrapper

@run_on_cpu
def process_input(audio_file=None):
    full_message = ""
    for partial_message in process_audio(audio_file):
        full_message = partial_message  # Always use the latest partial message
    return full_message

@run_on_cpu
def process_transcribe_input(audio_file=None):
    full_message = ""
    for partial_message in process_audio(audio_file, transcript=True):
        full_message = partial_message  # Always use the latest partial message
    return full_message

class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        stop_ids = [tokenizer.eos_token_id, 128009]
        for stop_id in stop_ids:
            if input_ids[0][-1] == stop_id:
                return True
        return False

def process_audio(audio_file, transcript=False):
    if audio_file is None:
        raise ValueError("No audio file provided")

    logging.info(f"Audio file received: {audio_file}")
    logging.info(f"Audio file type: {type(audio_file)}")

    sound_tokens = audio_to_sound_tokens_whisperspeech_transcribe(audio_file) if transcript else audio_to_sound_tokens_whisperspeech(audio_file)
    logging.info("Sound tokens generated successfully")

    messages = [
        {"role": "user", "content": sound_tokens},
    ]

    stop = StopOnTokens()
    input_str = tokenizer.apply_chat_template(messages, tokenize=False)
    input_ids = tokenizer.encode(input_str, return_tensors="pt")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        max_new_tokens=1024,
        do_sample=False,
        stopping_criteria=StoppingCriteriaList([stop])
    )

    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    partial_message = ""
    for new_token in streamer:
        partial_message += new_token
        if tokenizer.eos_token in partial_message:
            break
        partial_message = partial_message.replace("assistant\n\n", "")
        yield partial_message

good_examples = []
for file in os.listdir("./examples"):
    if file.endswith(".wav"):
        good_examples.append([f"./examples/{file}"])
bad_examples = []
for file in os.listdir("./bad_examples"):
    if file.endswith(".wav"):
        bad_examples.append([f"./bad_examples/{file}"])
examples = []
examples.extend(good_examples)
examples.extend(bad_examples)

with gr.Blocks() as iface:
    gr.Markdown("# Llama3.2s Mini: checkpoint September 26, 2024")
    gr.Markdown("Enter text to convert to audio, then submit the audio to generate text or Upload Audio")
    gr.Markdown("Inspired by [Homebrew Ltd](https://homebrew.ltd/) | [Read their blog post](https://homebrew.ltd/blog/llama3-just-got-ears)")
    gr.Markdown("Llama 3.2s 1B Instruct trained on ~36k samples from [homebrewltd/instruction-speech-whispervq-v2](https://www.huggingface.co/homebrewltd/instruction-speech-whispervq-v2).")
    gr.Markdown("**WARNING**: This model is extremely undertrained. Do not expect accurate, or even relevant content.")

    with gr.Row():
        input_type = gr.Radio(["text", "audio"], label="Input Type", value="audio")
        text_input = gr.Textbox(label="Text Input", visible=False)
        audio_input = gr.Audio(label="Audio", type="filepath", visible=True)

    convert_button = gr.Button("Make synthetic audio", visible=False)
    submit_button = gr.Button("Chat with AI using audio")
    transcrip_button = gr.Button("Make Model transcribe the audio")
    
    text_output = gr.Textbox(label="Generated Text")
    
    def update_visibility(input_type):
        return (gr.update(visible=input_type == "text"), 
                gr.update(visible=input_type == "text"))

    def convert_and_display(text):
        audio_file = text_to_audio_file(text)
        return audio_file

    input_type.change(
        update_visibility,
        inputs=[input_type],
        outputs=[text_input, convert_button]
    )

    convert_button.click(
        convert_and_display,
        inputs=[text_input],
        outputs=[audio_input]
    )
    
    submit_button.click(
        process_input,
        inputs=[audio_input],
        outputs=[text_output]
    )
    transcrip_button.click(
        process_transcribe_input,
        inputs=[audio_input],
        outputs=[text_output]
    )
    
    gr.Examples(examples, inputs=[audio_input])

iface.queue()
iface.launch()