File size: 7,080 Bytes
cd51b0f c4b9526 c3d86d3 cd51b0f c3d86d3 c4b9526 cd51b0f 031bc5a cc0fe39 92a440c 0646ffe 92a440c cd51b0f 92a440c 39cc970 c3d86d3 cd51b0f c3d86d3 39cc970 c3d86d3 cd51b0f c3d86d3 39cc970 c3d86d3 cd51b0f c3d86d3 39cc970 cd51b0f 39cc970 cd51b0f 6715980 d31d6fc c3d86d3 d31d6fc cd51b0f 6715980 d31d6fc c3d86d3 d31d6fc cd51b0f c3d86d3 cd51b0f c3d86d3 cd51b0f c3d86d3 cd51b0f c3d86d3 cd51b0f c3d86d3 cd51b0f c3d86d3 cd51b0f c3d86d3 cd51b0f c3d86d3 cd51b0f c3d86d3 d31d6fc c3d86d3 ad181b3 6715980 c3d86d3 cd51b0f e68d5ed c3d86d3 cd51b0f c3d86d3 cd51b0f c3d86d3 6715980 c3d86d3 6715980 c3d86d3 78bce4d cd51b0f c3d86d3 cd51b0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import os
os.environ['NUMPY_EXPERIMENTAL_ARRAY_FUNCTION'] = '0'
import gradio as gr
import torch
import torchaudio
from whisperspeech.vq_stoks import RQBottleneckTransformer
from encodec.utils import convert_audio
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
from threading import Thread
import logging
from generate_audio import TTSProcessor
import uuid
device = "cpu"
vq_model = RQBottleneckTransformer.load_model(
"whisper-vq-stoks-medium-en+pl-fixed.model"
).to(device)
use_8bit = False
llm_path = "QuietImpostor/Llama-3.2s-1B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(llm_path)
model_kwargs = {}
if use_8bit:
model_kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_enable_fp32_cpu_offload=False,
llm_int8_has_fp16_weight=False,
)
else:
model_kwargs["torch_dtype"] = torch.float32
model = AutoModelForCausalLM.from_pretrained(llm_path, **model_kwargs).to(device)
def audio_to_sound_tokens_whisperspeech(audio_path):
vq_model.ensure_whisper(device)
wav, sr = torchaudio.load(audio_path)
if sr != 16000:
wav = torchaudio.functional.resample(wav, sr, 16000)
with torch.no_grad():
codes = vq_model.encode_audio(wav.to(device))
codes = codes[0].cpu().tolist()
result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
return f'<|sound_start|>{result}<|sound_end|>'
def audio_to_sound_tokens_whisperspeech_transcribe(audio_path):
vq_model.ensure_whisper(device)
wav, sr = torchaudio.load(audio_path)
if sr != 16000:
wav = torchaudio.functional.resample(wav, sr, 16000)
with torch.no_grad():
codes = vq_model.encode_audio(wav.to(device))
codes = codes[0].cpu().tolist()
result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
return f'<|reserved_special_token_69|><|sound_start|>{result}<|sound_end|>'
def text_to_audio_file(text):
id = str(uuid.uuid4())
temp_file = f"./user_audio/{id}_temp_audio.wav"
text_split = "_".join(text.lower().split(" "))
if text_split[-1] == ".":
text_split = text_split[:-1]
tts = TTSProcessor(device)
tts.convert_text_to_audio_file(text, temp_file)
print(f"Saved audio to {temp_file}")
return temp_file
def run_on_cpu(func):
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
return wrapper
@run_on_cpu
def process_input(audio_file=None):
full_message = ""
for partial_message in process_audio(audio_file):
full_message = partial_message # Always use the latest partial message
return full_message
@run_on_cpu
def process_transcribe_input(audio_file=None):
full_message = ""
for partial_message in process_audio(audio_file, transcript=True):
full_message = partial_message # Always use the latest partial message
return full_message
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
stop_ids = [tokenizer.eos_token_id, 128009]
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id:
return True
return False
def process_audio(audio_file, transcript=False):
if audio_file is None:
raise ValueError("No audio file provided")
logging.info(f"Audio file received: {audio_file}")
logging.info(f"Audio file type: {type(audio_file)}")
sound_tokens = audio_to_sound_tokens_whisperspeech_transcribe(audio_file) if transcript else audio_to_sound_tokens_whisperspeech(audio_file)
logging.info("Sound tokens generated successfully")
messages = [
{"role": "user", "content": sound_tokens},
]
stop = StopOnTokens()
input_str = tokenizer.apply_chat_template(messages, tokenize=False)
input_ids = tokenizer.encode(input_str, return_tensors="pt")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=1024,
do_sample=False,
stopping_criteria=StoppingCriteriaList([stop])
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
partial_message = ""
for new_token in streamer:
partial_message += new_token
if tokenizer.eos_token in partial_message:
break
partial_message = partial_message.replace("assistant\n\n", "")
yield partial_message
good_examples = []
for file in os.listdir("./examples"):
if file.endswith(".wav"):
good_examples.append([f"./examples/{file}"])
bad_examples = []
for file in os.listdir("./bad_examples"):
if file.endswith(".wav"):
bad_examples.append([f"./bad_examples/{file}"])
examples = []
examples.extend(good_examples)
examples.extend(bad_examples)
with gr.Blocks() as iface:
gr.Markdown("# Llama3.2s Mini: checkpoint September 26, 2024")
gr.Markdown("Enter text to convert to audio, then submit the audio to generate text or Upload Audio")
gr.Markdown("Inspired by [Homebrew Ltd](https://homebrew.ltd/) | [Read their blog post](https://homebrew.ltd/blog/llama3-just-got-ears)")
gr.Markdown("Llama 3.2s 1B Instruct trained on ~36k samples from [homebrewltd/instruction-speech-whispervq-v2](https://www.huggingface.co/homebrewltd/instruction-speech-whispervq-v2).")
gr.Markdown("**WARNING**: This model is extremely undertrained. Do not expect accurate, or even relevant content.")
with gr.Row():
input_type = gr.Radio(["text", "audio"], label="Input Type", value="audio")
text_input = gr.Textbox(label="Text Input", visible=False)
audio_input = gr.Audio(label="Audio", type="filepath", visible=True)
convert_button = gr.Button("Make synthetic audio", visible=False)
submit_button = gr.Button("Chat with AI using audio")
transcrip_button = gr.Button("Make Model transcribe the audio")
text_output = gr.Textbox(label="Generated Text")
def update_visibility(input_type):
return (gr.update(visible=input_type == "text"),
gr.update(visible=input_type == "text"))
def convert_and_display(text):
audio_file = text_to_audio_file(text)
return audio_file
input_type.change(
update_visibility,
inputs=[input_type],
outputs=[text_input, convert_button]
)
convert_button.click(
convert_and_display,
inputs=[text_input],
outputs=[audio_input]
)
submit_button.click(
process_input,
inputs=[audio_input],
outputs=[text_output]
)
transcrip_button.click(
process_transcribe_input,
inputs=[audio_input],
outputs=[text_output]
)
gr.Examples(examples, inputs=[audio_input])
iface.queue()
iface.launch() |