|
import os |
|
|
|
os.system( |
|
"pip install uvicorn --upgrade;\ |
|
pip install gradio==3.47.1;\ |
|
pip install transformers;\ |
|
pip install diffusers;\ |
|
pip install accelerate;\ |
|
pip install torch" |
|
) |
|
|
|
import gradio as gr |
|
from PIL import Image |
|
|
|
import torch |
|
from diffusers import AutoPipelineForInpainting |
|
from diffusers.utils import load_image |
|
|
|
def draw_on_image(image, prompt): |
|
print(image, prompt) |
|
|
|
if not prompt: |
|
return |
|
|
|
init_image = load_image( |
|
image["image"] |
|
) |
|
mask_image = load_image( |
|
image["mask"] |
|
) |
|
|
|
res_image = pipeline(prompt=prompt, image=init_image, mask_image=mask_image, num_inference_steps=5).images[0] |
|
|
|
return res_image |
|
|
|
inputs = [ |
|
gr.Image(tool="sketch", label="Image", type="pil"), |
|
gr.Text(max_lines=1) |
|
] |
|
|
|
if torch.cuda.is_available(): |
|
torch_dtype = torch.float16 |
|
device = "cuda" |
|
else: |
|
torch_dtype = torch.float32 |
|
device = "cpu" |
|
|
|
pipeline = AutoPipelineForInpainting.from_pretrained( |
|
"Lykon/absolute-reality-1.6525-inpainting", torch_dtype=torch_dtype |
|
) |
|
|
|
pipeline.to(device) |
|
|
|
app = gr.Interface(draw_on_image, inputs=inputs, outputs="image") |
|
app.queue() |
|
app.launch(share=True) |