File size: 14,163 Bytes
8bf2435
 
756262f
8bf2435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e92074
8bf2435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2843087
 
 
8bf2435
 
 
 
756262f
8bf2435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fea2bf
8bf2435
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
from fastai.vision.models.unet import DynamicUnet
from torchvision.models.resnet import resnet18
from fastai.vision.models import resnet18
from fastai.vision.learner import create_body
import streamlit as st
from PIL import Image
import cv2 as cv
import os
import glob
import time
import numpy as np
from PIL import Image
from pathlib import Path
from tqdm.notebook import tqdm
import matplotlib.pyplot as plt
from skimage.color import rgb2lab, lab2rgb

# pip install fastai==2.4

import torch
from torch import nn, optim
from torchvision import transforms
from torchvision.utils import make_grid
from torch.utils.data import Dataset, DataLoader
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
use_colab = None

SIZE = 256


class ColorizationDataset(Dataset):
    def __init__(self, paths, split='train'):
        if split == 'train':
            self.transforms = transforms.Compose([
                transforms.Resize((SIZE, SIZE),  Image.BICUBIC),
                transforms.RandomHorizontalFlip(),
            ])
        elif split == 'val':
            self.transforms = transforms.Resize((SIZE, SIZE),  Image.BICUBIC)

        self.split = split
        self.size = SIZE
        self.paths = paths

    def __getitem__(self, idx):
        img = Image.open(self.paths[idx]).convert("RGB")
        img = self.transforms(img)
        img = np.array(img)
        img_lab = rgb2lab(img).astype("float32")  # Converting RGB to L*a*b
        img_lab = transforms.ToTensor()(img_lab)
        L = img_lab[[0], ...] / 50. - 1.  # Between -1 and 1
        ab = img_lab[[1, 2], ...] / 110.  # Between -1 and 1

        return {'L': L, 'ab': ab}

    def __len__(self):
        return len(self.paths)


def make_dataloaders(batch_size=16, n_workers=4, pin_memory=True, **kwargs):
    dataset = ColorizationDataset(**kwargs)
    dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=n_workers,
                            pin_memory=pin_memory)
    return dataloader


class UnetBlock(nn.Module):
    def __init__(self, nf, ni, submodule=None, input_c=None, dropout=False,
                 innermost=False, outermost=False):
        super().__init__()
        self.outermost = outermost
        if input_c is None:
            input_c = nf
        downconv = nn.Conv2d(input_c, ni, kernel_size=4,
                             stride=2, padding=1, bias=False)
        downrelu = nn.LeakyReLU(0.2, True)
        downnorm = nn.BatchNorm2d(ni)
        uprelu = nn.ReLU(True)
        upnorm = nn.BatchNorm2d(nf)

        if outermost:
            upconv = nn.ConvTranspose2d(ni * 2, nf, kernel_size=4,
                                        stride=2, padding=1)
            down = [downconv]
            up = [uprelu, upconv, nn.Tanh()]
            model = down + [submodule] + up
        elif innermost:
            upconv = nn.ConvTranspose2d(ni, nf, kernel_size=4,
                                        stride=2, padding=1, bias=False)
            down = [downrelu, downconv]
            up = [uprelu, upconv, upnorm]
            model = down + up
        else:
            upconv = nn.ConvTranspose2d(ni * 2, nf, kernel_size=4,
                                        stride=2, padding=1, bias=False)
            down = [downrelu, downconv, downnorm]
            up = [uprelu, upconv, upnorm]
            if dropout:
                up += [nn.Dropout(0.5)]
            model = down + [submodule] + up
        self.model = nn.Sequential(*model)

    def forward(self, x):
        if self.outermost:
            return self.model(x)
        else:
            return torch.cat([x, self.model(x)], 1)


class Unet(nn.Module):
    def __init__(self, input_c=1, output_c=2, n_down=8, num_filters=64):
        super().__init__()
        unet_block = UnetBlock(
            num_filters * 8, num_filters * 8, innermost=True)
        for _ in range(n_down - 5):
            unet_block = UnetBlock(
                num_filters * 8, num_filters * 8, submodule=unet_block, dropout=True)
        out_filters = num_filters * 8
        for _ in range(3):
            unet_block = UnetBlock(
                out_filters // 2, out_filters, submodule=unet_block)
            out_filters //= 2
        self.model = UnetBlock(
            output_c, out_filters, input_c=input_c, submodule=unet_block, outermost=True)

    def forward(self, x):
        return self.model(x)


class PatchDiscriminator(nn.Module):
    def __init__(self, input_c, num_filters=64, n_down=3):
        super().__init__()
        model = [self.get_layers(input_c, num_filters, norm=False)]
        model += [self.get_layers(num_filters * 2 ** i, num_filters * 2 ** (i + 1), s=1 if i == (n_down-1) else 2)
                  for i in range(n_down)]  # the 'if' statement is taking care of not using
        # stride of 2 for the last block in this loop
        # Make sure to not use normalization or
        model += [self.get_layers(num_filters * 2 **
                                  n_down, 1, s=1, norm=False, act=False)]
        # activation for the last layer of the model
        self.model = nn.Sequential(*model)

    def get_layers(self, ni, nf, k=4, s=2, p=1, norm=True, act=True):
        layers = [nn.Conv2d(ni, nf, k, s, p, bias=not norm)]
        if norm:
            layers += [nn.BatchNorm2d(nf)]
        if act:
            layers += [nn.LeakyReLU(0.2, True)]
        return nn.Sequential(*layers)

    def forward(self, x):
        return self.model(x)


class GANLoss(nn.Module):
    def __init__(self, gan_mode='vanilla', real_label=1.0, fake_label=0.0):
        super().__init__()
        self.register_buffer('real_label', torch.tensor(real_label))
        self.register_buffer('fake_label', torch.tensor(fake_label))
        if gan_mode == 'vanilla':
            self.loss = nn.BCEWithLogitsLoss()
        elif gan_mode == 'lsgan':
            self.loss = nn.MSELoss()

    def get_labels(self, preds, target_is_real):
        if target_is_real:
            labels = self.real_label
        else:
            labels = self.fake_label
        return labels.expand_as(preds)

    def __call__(self, preds, target_is_real):
        labels = self.get_labels(preds, target_is_real)
        loss = self.loss(preds, labels)
        return loss


def init_weights(net, init='norm', gain=0.02):

    def init_func(m):
        classname = m.__class__.__name__
        if hasattr(m, 'weight') and 'Conv' in classname:
            if init == 'norm':
                nn.init.normal_(m.weight.data, mean=0.0, std=gain)
            elif init == 'xavier':
                nn.init.xavier_normal_(m.weight.data, gain=gain)
            elif init == 'kaiming':
                nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')

            if hasattr(m, 'bias') and m.bias is not None:
                nn.init.constant_(m.bias.data, 0.0)
        elif 'BatchNorm2d' in classname:
            nn.init.normal_(m.weight.data, 1., gain)
            nn.init.constant_(m.bias.data, 0.)

    net.apply(init_func)
    print(f"model initialized with {init} initialization")
    return net


def init_model(model, device):
    model = model.to(device)
    model = init_weights(model)
    return model


class MainModel(nn.Module):
    def __init__(self, net_G=None, lr_G=2e-4, lr_D=2e-4,
                 beta1=0.5, beta2=0.999, lambda_L1=100.):
        super().__init__()

        self.device = torch.device(
            "cuda" if torch.cuda.is_available() else "cpu")
        self.lambda_L1 = lambda_L1

        if net_G is None:
            self.net_G = init_model(
                Unet(input_c=1, output_c=2, n_down=8, num_filters=64), self.device)
        else:
            self.net_G = net_G.to(self.device)
        self.net_D = init_model(PatchDiscriminator(
            input_c=3, n_down=3, num_filters=64), self.device)
        self.GANcriterion = GANLoss(gan_mode='vanilla').to(self.device)
        self.L1criterion = nn.L1Loss()
        self.opt_G = optim.Adam(self.net_G.parameters(),
                                lr=lr_G, betas=(beta1, beta2))
        self.opt_D = optim.Adam(self.net_D.parameters(),
                                lr=lr_D, betas=(beta1, beta2))

    def set_requires_grad(self, model, requires_grad=True):
        for p in model.parameters():
            p.requires_grad = requires_grad

    def setup_input(self, data):
        self.L = data['L'].to(self.device)
        self.ab = data['ab'].to(self.device)

    def forward(self):
        self.fake_color = self.net_G(self.L)

    def backward_D(self):
        fake_image = torch.cat([self.L, self.fake_color], dim=1)
        fake_preds = self.net_D(fake_image.detach())
        self.loss_D_fake = self.GANcriterion(fake_preds, False)
        real_image = torch.cat([self.L, self.ab], dim=1)
        real_preds = self.net_D(real_image)
        self.loss_D_real = self.GANcriterion(real_preds, True)
        self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5
        self.loss_D.backward()

    def backward_G(self):
        fake_image = torch.cat([self.L, self.fake_color], dim=1)
        fake_preds = self.net_D(fake_image)
        self.loss_G_GAN = self.GANcriterion(fake_preds, True)
        self.loss_G_L1 = self.L1criterion(
            self.fake_color, self.ab) * self.lambda_L1
        self.loss_G = self.loss_G_GAN + self.loss_G_L1
        self.loss_G.backward()

    def optimize(self):
        self.forward()
        self.net_D.train()
        self.set_requires_grad(self.net_D, True)
        self.opt_D.zero_grad()
        self.backward_D()
        self.opt_D.step()

        self.net_G.train()
        self.set_requires_grad(self.net_D, False)
        self.opt_G.zero_grad()
        self.backward_G()
        self.opt_G.step()


class AverageMeter:
    def __init__(self):
        self.reset()

    def reset(self):
        self.count, self.avg, self.sum = [0.] * 3

    def update(self, val, count=1):
        self.count += count
        self.sum += count * val
        self.avg = self.sum / self.count


def create_loss_meters():
    loss_D_fake = AverageMeter()
    loss_D_real = AverageMeter()
    loss_D = AverageMeter()
    loss_G_GAN = AverageMeter()
    loss_G_L1 = AverageMeter()
    loss_G = AverageMeter()

    return {'loss_D_fake': loss_D_fake,
            'loss_D_real': loss_D_real,
            'loss_D': loss_D,
            'loss_G_GAN': loss_G_GAN,
            'loss_G_L1': loss_G_L1,
            'loss_G': loss_G}


def update_losses(model, loss_meter_dict, count):
    for loss_name, loss_meter in loss_meter_dict.items():
        loss = getattr(model, loss_name)
        loss_meter.update(loss.item(), count=count)


def lab_to_rgb(L, ab):
    """
    Takes a batch of images
    """

    L = (L + 1.) * 50.
    ab = ab * 110.
    Lab = torch.cat([L, ab], dim=1).permute(0, 2, 3, 1).cpu().numpy()
    rgb_imgs = []
    for img in Lab:
        img_rgb = lab2rgb(img)
        rgb_imgs.append(img_rgb)
    return np.stack(rgb_imgs, axis=0)


def visualize(model, data, dims):
    model.net_G.eval()
    with torch.no_grad():
        model.setup_input(data)
        model.forward()
    model.net_G.train()
    fake_color = model.fake_color.detach()
    real_color = model.ab
    L = model.L
    fake_imgs = lab_to_rgb(L, fake_color)
    real_imgs = lab_to_rgb(L, real_color)
    for i in range(1):
        # t_img = transforms.Resize((dims[0], dims[1]))(t_img)
        img = Image.fromarray(np.uint8(fake_imgs[i]))
        img = cv.resize(fake_imgs[i], dsize=(
            dims[1], dims[0]), interpolation=cv.INTER_CUBIC)
        # st.text(f"Size of fake image {fake_imgs[i].shape} \n Type of image = {type(fake_imgs[i])}")
        st.image(img, caption="Output image",
                 use_column_width='auto', clamp=True)


def log_results(loss_meter_dict):
    for loss_name, loss_meter in loss_meter_dict.items():
        print(f"{loss_name}: {loss_meter.avg:.5f}")


# pip install fastai==2.4
from fastai.vision.learner import create_body
from torchvision.models.resnet import resnet18
from fastai.vision.models.unet import DynamicUnet


def build_res_unet(n_input=1, n_output=2, size=256):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    body = create_body(resnet18(pretrained=True), n_in=n_input, cut=-2)
    net_G = DynamicUnet(body, n_output, (size, size)).to(device)
    return net_G


net_G = build_res_unet(n_input=1, n_output=2, size=256)
net_G.load_state_dict(torch.load("res18-unet.pt", map_location=device))
model = MainModel(net_G=net_G)
model.load_state_dict(torch.load("main-model.pt", map_location=device))


class MyDataset(torch.utils.data.Dataset):
    def __init__(self, img_list):
        super(MyDataset, self).__init__()
        self.img_list = img_list
        self.augmentations = transforms.Resize((SIZE, SIZE),  Image.BICUBIC)

    def __len__(self):
        return len(self.img_list)

    def __getitem__(self, idx):
        img = self.img_list[idx]
        img = self.augmentations(img)
        img = np.array(img)
        img_lab = rgb2lab(img).astype("float32")  # Converting RGB to L*a*b
        img_lab = transforms.ToTensor()(img_lab)
        L = img_lab[[0], ...] / 50. - 1.  # Between -1 and 1
        ab = img_lab[[1, 2], ...] / 110.
        return {'L': L, 'ab': ab}

def make_dataloaders2(batch_size=16, n_workers=4, pin_memory=True, **kwargs):
    dataset = MyDataset(**kwargs)
    dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=n_workers,
                            pin_memory=pin_memory)
    return dataloader


# st.set_option('deprecation.showfileUploaderEncoding', False)
# @st.cache(allow_output_mutation= True)
st.write("""
        # Image Recolorisation
        """
        )
st.subheader("Created by Pushkar")
file_up = st.file_uploader("Upload an jpg image",  type=["jpg", "jpeg", "png"])

if file_up is not None:
    im = Image.open(file_up)
    st.text(body=f"Size of uploaded image {im.shape}")
    a = im.shape
    st.image(im, caption="Uploaded Image.", use_column_width='auto')
    test_dl = make_dataloaders2(img_list=[im])
    for data in test_dl:
        model.setup_input(data)
        model.optimize()
        visualize(model, data, a)