Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
# Charger le modèle et le tokenizer
|
6 |
+
checkpoint = "Propicto/t2p-t5-large-orfeo"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
8 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
9 |
+
|
10 |
+
# Lire le lexique
|
11 |
+
@st.cache
|
12 |
+
def read_lexicon(lexicon):
|
13 |
+
df = pd.read_csv(lexicon, sep='\t')
|
14 |
+
df['keyword_no_cat'] = df['lemma'].str.split(' #').str[0].str.strip().str.replace(' ', '_')
|
15 |
+
return df
|
16 |
+
|
17 |
+
lexicon = read_lexicon("lexicon.csv")
|
18 |
+
|
19 |
+
# Processus de sortie de la traduction
|
20 |
+
def process_output_trad(pred):
|
21 |
+
return pred.split()
|
22 |
+
|
23 |
+
def get_id_picto_from_predicted_lemma(df_lexicon, lemma):
|
24 |
+
id_picto = df_lexicon.loc[df_lexicon['keyword_no_cat'] == lemma, 'id_picto'].tolist()
|
25 |
+
return (id_picto[0], lemma) if id_picto else (0, lemma)
|
26 |
+
|
27 |
+
# Génération du contenu HTML pour afficher les pictogrammes
|
28 |
+
def generate_html(ids):
|
29 |
+
html_content = '<html><body>'
|
30 |
+
for picto_id, lemma in ids:
|
31 |
+
if picto_id != 0: # ignore invalid IDs
|
32 |
+
img_url = f"https://static.arasaac.org/pictograms/{picto_id}/{picto_id}_500.png"
|
33 |
+
html_content += f'''
|
34 |
+
<figure style="display:inline-block; margin:1px;">
|
35 |
+
<img src="{img_url}" alt="{lemma}" width="200" height="200" />
|
36 |
+
<figcaption>{lemma}</figcaption>
|
37 |
+
</figure>
|
38 |
+
'''
|
39 |
+
html_content += '</body></html>'
|
40 |
+
return html_content
|
41 |
+
|
42 |
+
# Interface utilisateur
|
43 |
+
st.title("Pictogramme Générateur de Traduction")
|
44 |
+
|
45 |
+
sentence = st.text_input("Entrez une phrase en français:")
|
46 |
+
if sentence:
|
47 |
+
inputs = tokenizer(sentence, return_tensors="pt").input_ids
|
48 |
+
outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95)
|
49 |
+
pred = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
50 |
+
|
51 |
+
sentence_to_map = process_output_trad(pred)
|
52 |
+
pictogram_ids = [get_id_picto_from_predicted_lemma(lexicon, lemma) for lemma in sentence_to_map]
|
53 |
+
|
54 |
+
html = generate_html(pictogram_ids)
|
55 |
+
st.components.v1.html(html, height=600, scrolling=True)
|