import streamlit as st from langchain.embeddings import HuggingFaceInstructEmbeddings from langchain.vectorstores import FAISS from langchain.text_splitter import CharacterTextSplitter from langchain.document_loaders import DirectoryLoader, PyPDFLoader import os from PyPDF2 import PdfReader from langchain.chains import RetrievalQAWithSourcesChain from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain #from htmlTemplates import css, bot_template, user_template from langchain.llms import HuggingFaceHub ########### #pip install faiss-cpu #pip install langchain #pip install pypdf #pip tiktoken #pip install InstructorEmbedding ############### # PDF in String umwandeln def get_pdf_text(folder_path): text = "" # Durchsuche alle Dateien im angegebenen Verzeichnis for filename in os.listdir(folder_path): filepath = os.path.join(folder_path, filename) # Überprüfe, ob die Datei die Erweiterung ".pdf" hat if os.path.isfile(filepath) and filename.lower().endswith(".pdf"): pdf_reader = PdfReader(filepath) for page in pdf_reader.pages: text += page.extract_text() #text += '\n' return text #Chunks erstellen def get_text_chunks(text): #Arbeitsweise Textsplitter definieren text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) return chunks # nur zum Anlegen des lokalen Verzeichnisses "Store" und speichern der Vektor-Datenbank def create_vectorstore_and_store(text_chunks): embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-base") # Initiate Faiss DB vectorstoreDB = FAISS.from_texts(texts=text_chunks,embedding=embeddings)#texts=text_chunks, ### ### --> danach soll das PDF-Verzeichnis gelöscht werden, bzw. Datein verschieben, weil beim nächsten Upload ### # Verzeichnis in dem die VektorDB gespeichert werden soll save_directory = "Store" #VektorDB lokal speichern vectorstoreDB.save_local(save_directory) print(vectorstoreDB) return None ######## def get_vectorstore(): embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-base") #Abruf lokaler Vektordatenbank save_directory = "Store" vectorstoreDB = FAISS.load_local(save_directory, embeddings) return vectorstoreDB def main(): user_question = st.text_area("Stell mir eine Frage: ") folder_path = './files' pdf_text = get_pdf_text(folder_path) text_chunks = get_text_chunks(pdf_text) create_vectorstore_and_store(text_chunks) retriever=get_vectorstore().as_retriever() retrieved_docs=retriever.invoke( user_question ) if user_question: st.text(retrieved_docs[0].page_content) # bei incoming pdf #vectorstore_DB=get_vectorstore() # bei Abfrage durch Chatbot #print(get_vectorstore().similarity_search_with_score("stelle")) # zeigt an ob Vektordatenbank gefüllt ist #print(get_conversation_chain(get_vectorstore())) if __name__ == '__main__': main()