Priyanshuchaudhary2425 commited on
Commit
3a4a022
β€’
1 Parent(s): 759a397

first update

Browse files
09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a508508ab683517c16a562d715298e6b49d6f478f9f6a2a60e55836ad95a7553
3
+ size 31273033
app.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ### 1. Imports and class names setup ###
3
+ import gradio as gr
4
+ import os
5
+ import torch
6
+ from model import create_effnetb2_model
7
+ from timeit import default_timer as timer
8
+ from typing import Tuple, Dict
9
+
10
+ # Setup class names
11
+ class_names = ["pizza", "steak", "sushi"]
12
+
13
+ ### 2. Model and transforms preparation ###
14
+ effnetb2, effnetb2_transforms = create_effnetb2_model(
15
+ num_classes=3)
16
+
17
+ # Load save weights
18
+ effnetb2.load_state_dict(
19
+ torch.load(
20
+ f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth",
21
+ map_location=torch.device("cpu") # load the model to the CPU
22
+ )
23
+ )
24
+
25
+ ### 3. Predicti function ###
26
+ def predict(img) -> Tuple[Dict, float]:
27
+ # Start a timer
28
+ start_time = timer()
29
+
30
+ # Transform the input image for use with EffNetB2
31
+ img = effnetb2_transforms(img).unsqueeze(0) # uqueeze = add batch dimension on 0th index
32
+
33
+ # Put model into eval mode, make prediction
34
+ effnetb2.eval()
35
+ with torch.inference_mode():
36
+ pred_probs = torch.softmax(effnetb2(img), dim=1)
37
+
38
+ # Create a prediction label and prediction probability dictionary
39
+ pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
40
+
41
+ # Calculate pred time
42
+ end_time = timer()
43
+ pred_time = round(end_time-start_time, 4)
44
+
45
+ # Return pred dict and pred time
46
+ return pred_labels_and_probs, pred_time
47
+
48
+
49
+ ### 4. Gradio app ###
50
+
51
+ import gradio as gr
52
+
53
+ # Create title, description and article strings
54
+ title = "FoodVision Mini πŸ•πŸ₯©πŸ£"
55
+ description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi."
56
+ article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
57
+
58
+ # Create example list
59
+ example_list = [["examples/" + example] for example in os.listdir("examples")]
60
+
61
+
62
+ # Create the Gradio demo
63
+ demo = gr.Interface(fn=predict, # Maps inputs to outputs
64
+ inputs=gr.Image(type="pil"),
65
+ outputs=[gr.Label(num_top_classes=3, label="Predictions"),
66
+ gr.Number(label="Prediction time (s)")],
67
+ examples=example_list,
68
+ title=title,
69
+ description=description,
70
+ article=article)
71
+
72
+ demo.launch(debug=False, # print errors locally?
73
+ share=True) # generate a publically shareable URL
model.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+ import torchvision
4
+ from torch import nn
5
+
6
+ def create_effnetb2_model(num_classes:int=3,
7
+ seed:int=42):
8
+
9
+ # 1, 2, 3. Create EffNetB2 pretrained weights, transforms and model
10
+ weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
11
+ transforms = weights.transforms()
12
+ model = torchvision.models.efficientnet_b2(weights=weights)
13
+
14
+ # 4. Freeze all layers in base model
15
+ for param in model.parameters():
16
+ param.requires_grad = False
17
+
18
+ # 5. Change classifier head with random seed for reproducibility
19
+ torch.manual_seed(seed)
20
+ model.classifier = nn.Sequential(
21
+ nn.Dropout(p=0.3, inplace=True),
22
+ nn.Linear(in_features=1408, out_features=num_classes),
23
+ )
24
+
25
+ return model, transforms
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch==1.12.0
2
+ torchvision==0.13.0
3
+ gradio==4.12.0