import numpy as np from models import chat_with_model, embed from prompts import create_gen_prompt, create_judge_prompt import time from concurrent.futures import ThreadPoolExecutor, as_completed import threading import streamlit as st # Import Streamlit import queue def generate_answer(question, previous_answers, model_name, open_router_key, openai_api_key): """Generates an answer to a question using the specified language model.""" gen_prompt = create_gen_prompt(question, previous_answers) try: new_answer = chat_with_model(prompt=gen_prompt, model=model_name, open_router_key=open_router_key, openai_api_key=openai_api_key) return new_answer except Exception as e: st.error(f"Error generating answer: {str(e)}") # Use st.error return None def evaluate_answer(question, new_answer, open_router_key, openai_api_key, judge_model_name): """Evaluates the coherence and novelty of an answer.""" judge_prompt = create_judge_prompt(question, new_answer) judge = judge_model_name # Use the judge_model_name passed to the function try: judge_response = chat_with_model(prompt=judge_prompt, model=judge, open_router_key=open_router_key, openai_api_key=openai_api_key) coherence_score = int(judge_response.split("")[1].split("")[0]) return coherence_score except Exception as e: st.error(f"Error getting judge response: {str(e)}") # Use st.error return None def process_question(question, model_name, open_router_key, openai_api_key, result_queue, judge_model_name,coherence_threshold,novelty_threshold): start_time = time.time() previous_answers = [] question_novelty = 0 try: while True: new_answer = generate_answer(question, previous_answers, model_name, open_router_key, openai_api_key) if new_answer is None: break coherence_score = evaluate_answer(question, new_answer, open_router_key, openai_api_key, judge_model_name) if coherence_score is None: break if coherence_score <= coherence_threshold: break novelty_score = get_novelty_score(new_answer, previous_answers, openai_api_key) if novelty_score < novelty_threshold: break result_dict = { "type": "answer", "question": question, "answer": new_answer, "coherence_score": coherence_score, "novelty_score": novelty_score, "results": [ { "question": question, "answers": previous_answers.copy() + [new_answer], "coherence_score": coherence_score, "novelty_score": question_novelty + novelty_score } ] } if result_queue is not None: # Check if result_queue is provided result_queue.put(result_dict) yield result_dict # Use yield to return the result immediately previous_answers.append(new_answer) question_novelty += novelty_score except Exception as e: if result_queue is not None: # Check if result_queue is provided result_queue.put({"type": "error", "message": str(e)}) time_taken = time.time() - start_time if result_queue is not None: # Check if result_queue is provided result_queue.put({ "type": "summary", "question": question, "total_novelty": question_novelty, "time_taken": time_taken }) return question_novelty, [ { "question": question, "answers": previous_answers, "coherence_score": coherence_score, "novelty_score": question_novelty } ] def get_novelty_score(new_answer: str, previous_answers: list, openai_api_key): new_embedding = embed(new_answer, openai_api_key) # If there are no previous answers, return maximum novelty if not previous_answers: return 1.0 previous_embeddings = [embed(answer, openai_api_key) for answer in previous_answers] similarities = [ np.dot(new_embedding, prev_embedding) / (np.linalg.norm(new_embedding) * np.linalg.norm(prev_embedding)) for prev_embedding in previous_embeddings ] max_similarity = max(similarities) novelty = 1 - max_similarity return novelty def benchmark_model_multithreaded(model_name, questions, open_router_key, openai_api_key, max_threads=None, judge_model_name=None,coherence_threshold=None,novelty_threshold=None): novelty_score = 0 results = [] result_queue = queue.Queue() # Create a queue for communication # Use max_threads if provided, otherwise default to the number of questions if max_threads is None: max_workers = len(questions) else: max_workers = max_threads with ThreadPoolExecutor(max_workers=max_workers) as executor: # Submit tasks to the thread pool future_to_question = { executor.submit(process_question, question, model_name, open_router_key, openai_api_key, result_queue, judge_model_name,coherence_threshold,novelty_threshold): question for question in questions } # Collect results as they become available from futures and the queue for future in as_completed(future_to_question): for result in future.result(): # Iterate over yielded results from process_question if result["type"] == "answer": st.write(f"**Question:** {result['question']}") st.write(f"**New Answer:**\n{result['answer']}") st.write(f"Coherence Score: {result['coherence_score']}") # st.success for coherence st.write(f"**Novelty Score:** {result['novelty_score']}") results.extend(result["results"]) novelty_score += result["novelty_score"] st.info(f"Total novelty score across all questions (so far): {novelty_score}") # st.info for running total elif result["type"] == "summary": st.info(f"Total novelty score for question '{result['question']}': {result['total_novelty']}") # st.info for summary st.info(f"Time taken: {result['time_taken']} seconds") # st.info for summary elif result["type"] == "error": st.error(f"Error in thread: {result['message']}") # st.error for errors # Process remaining results in the queue (if any) while not result_queue.empty(): result = result_queue.get() if result["type"] == "answer": st.write(f"**Question:** {result['question']}") st.write(f"**New Answer:**\n{result['answer']}") st.success(f"Coherence Score: {result['coherence_score']}") # st.success for coherence st.write(f"**Novelty Score:** {result['novelty_score']}") results.extend(result["results"]) # Add results here novelty_score += result["novelty_score"] # Update novelty score st.warning(f"Total novelty score across all questions (so far): {novelty_score}") elif result["type"] == "summary": st.info(f"Total novelty score for question '{result['question']}': {result['total_novelty']}") # st.info for summary st.info(f"Time taken: {result['time_taken']} seconds") # st.info for summary elif result["type"] == "error": st.error(f"Error in thread: {result['message']}") # st.error for errors st.info(f"Final total novelty score across all questions: {novelty_score}") return results def benchmark_model_sequential(model_name, questions, open_router_key, openai_api_key, judge_model_name,coherence_threshold,novelty_threshold): novelty_score = 0 results = [] for i, question in enumerate(questions): for result in process_question(question, model_name, open_router_key, openai_api_key, None, judge_model_name,coherence_threshold,novelty_threshold): if result["type"] == "answer": st.write(f"**Question:** {result['question']}") st.write(f"**New Answer:**\n{result['answer']}") st.success(f"Coherence Score: {result['coherence_score']}") # st.success for coherence st.write(f"**Novelty Score:** {result['novelty_score']}") results.extend(result["results"]) novelty_score += result["novelty_score"] # Add to novelty score st.success(f"Coherence Score: {result['coherence_score']}") # st.success for coherence elif result["type"] == "summary": st.info(f"Total novelty score for question '{result['question']}': {result['total_novelty']}") # st.info for summary st.info(f"Time taken: {result['time_taken']} seconds") # st.info for summary elif result["type"] == "error": st.error(f"Error in thread: {result['message']}") # st.error for errors st.info(f"Final total novelty score across all questions: {novelty_score}") return results