import numpy as np from models import chat_with_model, embed from prompts import questions, create_gen_prompt, create_judge_prompt from colorama import Fore, Style import time from concurrent.futures import ThreadPoolExecutor, as_completed import threading import argparse def parse_arguments(): parser = argparse.ArgumentParser(description="Benchmark a language model.") parser.add_argument("model_name", type=str, help="Name of the model to benchmark") parser.add_argument("--single-threaded", action="store_true", help="Run in single-threaded mode") return parser.parse_args() def benchmark_model(model_name, multithreaded=False): if multithreaded: return benchmark_model_multithreaded(model_name) else: return benchmark_model_sequential(model_name) def process_question(question, model_name): start_time = time.time() print(Fore.RED + question + Style.RESET_ALL) previous_answers = [] question_novelty = 0 try: while True: gen_prompt = create_gen_prompt(question, previous_answers) try: new_answer = chat_with_model(prompt=gen_prompt, model=model_name) except Exception as e: print(Fore.RED + f"Error generating answer: {str(e)}" + Style.RESET_ALL) break judge_prompt = create_judge_prompt(question, new_answer) judge = "openai/gpt-4o-mini" try: judge_response = chat_with_model(prompt=judge_prompt, model=judge) except Exception as e: print(Fore.RED + f"Error getting judge response: {str(e)}" + Style.RESET_ALL) break coherence_score = int(judge_response.split("")[ 1].split("")[0]) if coherence_score <= 3: print( Fore.YELLOW + "Output is incoherent. Moving to next question." + Style.RESET_ALL) break novelty_score = get_novelty_score(new_answer, previous_answers) if novelty_score < 0.1: print( Fore.YELLOW + "Output is redundant. Moving to next question." + Style.RESET_ALL) break print(f"New Answer:\n{new_answer}") print(Fore.GREEN + f"Coherence Score: {coherence_score}") print(f"Novelty Score: {novelty_score}" + Style.RESET_ALL) previous_answers.append(new_answer) question_novelty += novelty_score except Exception as e: print(Fore.RED + f"Unexpected error processing question: {str(e)}" + Style.RESET_ALL) time_taken = time.time() - start_time print(Fore.BLUE) print(f"Total novelty score for this question: {question_novelty}") print(f"Time taken: {time_taken} seconds") print(Style.RESET_ALL) return question_novelty def get_novelty_score(new_answer: str, previous_answers: list, openai_api_key=None): new_embedding = embed(new_answer, openai_api_key) # If there are no previous answers, return maximum novelty if not previous_answers: return 1.0 previous_embeddings = [embed(answer, openai_api_key) for answer in previous_answers] similarities = [ np.dot(new_embedding, prev_embedding) / (np.linalg.norm(new_embedding) * np.linalg.norm(prev_embedding)) for prev_embedding in previous_embeddings ] max_similarity = max(similarities) novelty = 1 - max_similarity return novelty def benchmark_model_multithreaded(model_name): novelty_score = 0 print_lock = threading.Lock() with ThreadPoolExecutor(max_workers=len(questions)) as executor: future_to_question = {executor.submit( process_question, question, model_name): question for question in questions} for future in as_completed(future_to_question): question = future_to_question[future] question_novelty = future.result() with print_lock: novelty_score += question_novelty print(Fore.YELLOW) print(f"Total novelty score across all questions: {novelty_score}") print(Style.RESET_ALL) return novelty_score def benchmark_model_sequential(model_name): novelty_score = 0 for question in questions: question_novelty = process_question(question, model_name) novelty_score += question_novelty print(Fore.YELLOW) print(f"Total novelty score across all questions: {novelty_score}") print(Style.RESET_ALL) return novelty_score if __name__ == "__main__": args = parse_arguments() benchmark_model(args.model_name, multithreaded=not args.single_threaded)