Presidentlin commited on
Commit
fe9a872
1 Parent(s): f28d088
Files changed (3) hide show
  1. __pycache__/main.cpython-310.pyc +0 -0
  2. app.py +9 -2
  3. main.py +7 -7
__pycache__/main.cpython-310.pyc CHANGED
Binary files a/__pycache__/main.cpython-310.pyc and b/__pycache__/main.cpython-310.pyc differ
 
app.py CHANGED
@@ -93,6 +93,11 @@ if st.session_state.open_router_key and st.session_state.openai_api_key:
93
  if "user_questions" not in st.session_state:
94
  st.session_state.user_questions = []
95
 
 
 
 
 
 
96
  # Workflow Selection
97
  workflow = st.radio("Select Workflow:", ["Use Predefined Questions", "Use User-Defined Questions"])
98
 
@@ -139,6 +144,8 @@ if st.session_state.open_router_key and st.session_state.openai_api_key:
139
  else:
140
  max_threads = None # For sequential mode
141
 
 
 
142
  # Benchmark Execution
143
  if st.button("Start Benchmark"):
144
  if not selected_questions:
@@ -152,9 +159,9 @@ if st.session_state.open_router_key and st.session_state.openai_api_key:
152
 
153
  # Benchmarking logic using the chosen execution mode
154
  if execution_mode == "Sequential":
155
- question_results = benchmark_model_sequential(model_name, selected_questions, st.session_state.open_router_key, st.session_state.openai_api_key,judge_model_name)
156
  else: # Multithreaded
157
- question_results = benchmark_model_multithreaded(model_name, selected_questions, st.session_state.open_router_key, st.session_state.openai_api_key, max_threads, judge_model_name)
158
 
159
  results.extend(question_results)
160
 
 
93
  if "user_questions" not in st.session_state:
94
  st.session_state.user_questions = []
95
 
96
+ # Threshold Sliders
97
+ st.subheader("Threshold Sliders")
98
+ coherence_threshold = st.slider("Coherence Threshold (0-5):", 0, 5, 3)
99
+ novelty_threshold = st.slider("Novelty Threshold (0-1):", 0.0, 1.0, 0.1)
100
+
101
  # Workflow Selection
102
  workflow = st.radio("Select Workflow:", ["Use Predefined Questions", "Use User-Defined Questions"])
103
 
 
144
  else:
145
  max_threads = None # For sequential mode
146
 
147
+
148
+
149
  # Benchmark Execution
150
  if st.button("Start Benchmark"):
151
  if not selected_questions:
 
159
 
160
  # Benchmarking logic using the chosen execution mode
161
  if execution_mode == "Sequential":
162
+ question_results = benchmark_model_sequential(model_name, selected_questions, st.session_state.open_router_key, st.session_state.openai_api_key,judge_model_name,coherence_threshold,novelty_threshold)
163
  else: # Multithreaded
164
+ question_results = benchmark_model_multithreaded(model_name, selected_questions, st.session_state.open_router_key, st.session_state.openai_api_key, max_threads, judge_model_name, coherence_threshold,novelty_threshold)
165
 
166
  results.extend(question_results)
167
 
main.py CHANGED
@@ -33,7 +33,7 @@ def evaluate_answer(question, new_answer, open_router_key, openai_api_key, judge
33
  return None
34
 
35
 
36
- def process_question(question, model_name, open_router_key, openai_api_key, result_queue, judge_model_name):
37
  start_time = time.time()
38
  previous_answers = []
39
  question_novelty = 0
@@ -48,12 +48,12 @@ def process_question(question, model_name, open_router_key, openai_api_key, resu
48
  if coherence_score is None:
49
  break
50
 
51
- if coherence_score <= 3:
52
  break
53
 
54
  novelty_score = get_novelty_score(new_answer, previous_answers, openai_api_key)
55
 
56
- if novelty_score < 0.1:
57
  break
58
 
59
 
@@ -126,7 +126,7 @@ def get_novelty_score(new_answer: str, previous_answers: list, openai_api_key):
126
  return novelty
127
 
128
 
129
- def benchmark_model_multithreaded(model_name, questions, open_router_key, openai_api_key, max_threads=None, judge_model_name=None):
130
  novelty_score = 0
131
  results = []
132
  result_queue = queue.Queue() # Create a queue for communication
@@ -140,7 +140,7 @@ def benchmark_model_multithreaded(model_name, questions, open_router_key, openai
140
  with ThreadPoolExecutor(max_workers=max_workers) as executor:
141
  # Submit tasks to the thread pool
142
  future_to_question = {
143
- executor.submit(process_question, question, model_name, open_router_key, openai_api_key, result_queue, judge_model_name): question
144
  for question in questions
145
  }
146
 
@@ -185,12 +185,12 @@ def benchmark_model_multithreaded(model_name, questions, open_router_key, openai
185
  return results
186
 
187
 
188
- def benchmark_model_sequential(model_name, questions, open_router_key, openai_api_key, judge_model_name):
189
  novelty_score = 0
190
  results = []
191
 
192
  for i, question in enumerate(questions):
193
- for result in process_question(question, model_name, open_router_key, openai_api_key, None, judge_model_name):
194
  if result["type"] == "answer":
195
  st.write(f"**Question:** {result['question']}")
196
  st.write(f"**New Answer:**\n{result['answer']}")
 
33
  return None
34
 
35
 
36
+ def process_question(question, model_name, open_router_key, openai_api_key, result_queue, judge_model_name,coherence_threshold,novelty_threshold):
37
  start_time = time.time()
38
  previous_answers = []
39
  question_novelty = 0
 
48
  if coherence_score is None:
49
  break
50
 
51
+ if coherence_score <= coherence_threshold:
52
  break
53
 
54
  novelty_score = get_novelty_score(new_answer, previous_answers, openai_api_key)
55
 
56
+ if novelty_score < novelty_threshold:
57
  break
58
 
59
 
 
126
  return novelty
127
 
128
 
129
+ def benchmark_model_multithreaded(model_name, questions, open_router_key, openai_api_key, max_threads=None, judge_model_name=None,coherence_threshold=None,novelty_threshold=None):
130
  novelty_score = 0
131
  results = []
132
  result_queue = queue.Queue() # Create a queue for communication
 
140
  with ThreadPoolExecutor(max_workers=max_workers) as executor:
141
  # Submit tasks to the thread pool
142
  future_to_question = {
143
+ executor.submit(process_question, question, model_name, open_router_key, openai_api_key, result_queue, judge_model_name,coherence_threshold,novelty_threshold): question
144
  for question in questions
145
  }
146
 
 
185
  return results
186
 
187
 
188
+ def benchmark_model_sequential(model_name, questions, open_router_key, openai_api_key, judge_model_name,coherence_threshold,novelty_threshold):
189
  novelty_score = 0
190
  results = []
191
 
192
  for i, question in enumerate(questions):
193
+ for result in process_question(question, model_name, open_router_key, openai_api_key, None, judge_model_name,coherence_threshold,novelty_threshold):
194
  if result["type"] == "answer":
195
  st.write(f"**Question:** {result['question']}")
196
  st.write(f"**New Answer:**\n{result['answer']}")