Presidentlin commited on
Commit
c77c9f7
1 Parent(s): 8bbf037
Files changed (2) hide show
  1. __pycache__/main.cpython-310.pyc +0 -0
  2. main.py +15 -5
__pycache__/main.cpython-310.pyc CHANGED
Binary files a/__pycache__/main.cpython-310.pyc and b/__pycache__/main.cpython-310.pyc differ
 
main.py CHANGED
@@ -7,7 +7,6 @@ import threading
7
  import streamlit as st # Import Streamlit
8
  import queue
9
 
10
-
11
  def generate_answer(question, previous_answers, model_name, open_router_key, openai_api_key):
12
  """Generates an answer to a question using the specified language model."""
13
  gen_prompt = create_gen_prompt(question, previous_answers)
@@ -38,6 +37,7 @@ def evaluate_answer(question, new_answer, open_router_key, openai_api_key):
38
 
39
  def process_question(question, model_name, open_router_key, openai_api_key, result_queue):
40
  start_time = time.time()
 
41
  previous_answers = []
42
  question_novelty = 0
43
 
@@ -52,12 +52,15 @@ def process_question(question, model_name, open_router_key, openai_api_key, resu
52
  break
53
 
54
  if coherence_score <= 3:
55
-
 
56
  break
57
 
58
  novelty_score = get_novelty_score(new_answer, previous_answers, openai_api_key)
59
 
60
  if novelty_score < 0.1:
 
 
61
  break
62
 
63
  # Append results to the queue instead of using st.write
@@ -66,7 +69,15 @@ def process_question(question, model_name, open_router_key, openai_api_key, resu
66
  "question": question,
67
  "answer": new_answer,
68
  "coherence_score": coherence_score,
69
- "novelty_score": novelty_score
 
 
 
 
 
 
 
 
70
  })
71
 
72
  previous_answers.append(new_answer)
@@ -75,7 +86,6 @@ def process_question(question, model_name, open_router_key, openai_api_key, resu
75
  except Exception as e:
76
  result_queue.put({"type": "error", "message": str(e)})
77
 
78
-
79
  time_taken = time.time() - start_time
80
  result_queue.put({
81
  "type": "summary",
@@ -84,7 +94,6 @@ def process_question(question, model_name, open_router_key, openai_api_key, resu
84
  "time_taken": time_taken
85
  })
86
 
87
-
88
  return question_novelty, [
89
  {
90
  "question": question,
@@ -144,6 +153,7 @@ def benchmark_model_multithreaded(model_name, questions, open_router_key, openai
144
  st.write(f"<span style='color:green'>Coherence Score: {result['coherence_score']}</span>",
145
  unsafe_allow_html=True)
146
  st.write(f"**Novelty Score:** {result['novelty_score']}")
 
147
  elif result["type"] == "summary":
148
  st.write(f"<span style='color:blue'>Total novelty score for question '{result['question']}': {result['total_novelty']}</span>",
149
  unsafe_allow_html=True)
 
7
  import streamlit as st # Import Streamlit
8
  import queue
9
 
 
10
  def generate_answer(question, previous_answers, model_name, open_router_key, openai_api_key):
11
  """Generates an answer to a question using the specified language model."""
12
  gen_prompt = create_gen_prompt(question, previous_answers)
 
37
 
38
  def process_question(question, model_name, open_router_key, openai_api_key, result_queue):
39
  start_time = time.time()
40
+ # st.write(f"<span style='color:red'>{question}</span>", unsafe_allow_html=True)
41
  previous_answers = []
42
  question_novelty = 0
43
 
 
52
  break
53
 
54
  if coherence_score <= 3:
55
+ # st.write("<span style='color:yellow'>Output is incoherent. Moving to next question.</span>",
56
+ # unsafe_allow_html=True)
57
  break
58
 
59
  novelty_score = get_novelty_score(new_answer, previous_answers, openai_api_key)
60
 
61
  if novelty_score < 0.1:
62
+ # st.write("<span style='color:yellow'>Output is redundant. Moving to next question.</span>",
63
+ # unsafe_allow_html=True)
64
  break
65
 
66
  # Append results to the queue instead of using st.write
 
69
  "question": question,
70
  "answer": new_answer,
71
  "coherence_score": coherence_score,
72
+ "novelty_score": novelty_score,
73
+ "results": [
74
+ {
75
+ "question": question,
76
+ "answers": previous_answers.copy() + [new_answer], # Include the new answer
77
+ "coherence_score": coherence_score,
78
+ "novelty_score": question_novelty + novelty_score # Accumulate novelty score
79
+ }
80
+ ]
81
  })
82
 
83
  previous_answers.append(new_answer)
 
86
  except Exception as e:
87
  result_queue.put({"type": "error", "message": str(e)})
88
 
 
89
  time_taken = time.time() - start_time
90
  result_queue.put({
91
  "type": "summary",
 
94
  "time_taken": time_taken
95
  })
96
 
 
97
  return question_novelty, [
98
  {
99
  "question": question,
 
153
  st.write(f"<span style='color:green'>Coherence Score: {result['coherence_score']}</span>",
154
  unsafe_allow_html=True)
155
  st.write(f"**Novelty Score:** {result['novelty_score']}")
156
+ results.extend(result["results"]) # Add results here
157
  elif result["type"] == "summary":
158
  st.write(f"<span style='color:blue'>Total novelty score for question '{result['question']}': {result['total_novelty']}</span>",
159
  unsafe_allow_html=True)