Spaces:
Running
Running
Presidentlin
commited on
Commit
•
c77c9f7
1
Parent(s):
8bbf037
- __pycache__/main.cpython-310.pyc +0 -0
- main.py +15 -5
__pycache__/main.cpython-310.pyc
CHANGED
Binary files a/__pycache__/main.cpython-310.pyc and b/__pycache__/main.cpython-310.pyc differ
|
|
main.py
CHANGED
@@ -7,7 +7,6 @@ import threading
|
|
7 |
import streamlit as st # Import Streamlit
|
8 |
import queue
|
9 |
|
10 |
-
|
11 |
def generate_answer(question, previous_answers, model_name, open_router_key, openai_api_key):
|
12 |
"""Generates an answer to a question using the specified language model."""
|
13 |
gen_prompt = create_gen_prompt(question, previous_answers)
|
@@ -38,6 +37,7 @@ def evaluate_answer(question, new_answer, open_router_key, openai_api_key):
|
|
38 |
|
39 |
def process_question(question, model_name, open_router_key, openai_api_key, result_queue):
|
40 |
start_time = time.time()
|
|
|
41 |
previous_answers = []
|
42 |
question_novelty = 0
|
43 |
|
@@ -52,12 +52,15 @@ def process_question(question, model_name, open_router_key, openai_api_key, resu
|
|
52 |
break
|
53 |
|
54 |
if coherence_score <= 3:
|
55 |
-
|
|
|
56 |
break
|
57 |
|
58 |
novelty_score = get_novelty_score(new_answer, previous_answers, openai_api_key)
|
59 |
|
60 |
if novelty_score < 0.1:
|
|
|
|
|
61 |
break
|
62 |
|
63 |
# Append results to the queue instead of using st.write
|
@@ -66,7 +69,15 @@ def process_question(question, model_name, open_router_key, openai_api_key, resu
|
|
66 |
"question": question,
|
67 |
"answer": new_answer,
|
68 |
"coherence_score": coherence_score,
|
69 |
-
"novelty_score": novelty_score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
})
|
71 |
|
72 |
previous_answers.append(new_answer)
|
@@ -75,7 +86,6 @@ def process_question(question, model_name, open_router_key, openai_api_key, resu
|
|
75 |
except Exception as e:
|
76 |
result_queue.put({"type": "error", "message": str(e)})
|
77 |
|
78 |
-
|
79 |
time_taken = time.time() - start_time
|
80 |
result_queue.put({
|
81 |
"type": "summary",
|
@@ -84,7 +94,6 @@ def process_question(question, model_name, open_router_key, openai_api_key, resu
|
|
84 |
"time_taken": time_taken
|
85 |
})
|
86 |
|
87 |
-
|
88 |
return question_novelty, [
|
89 |
{
|
90 |
"question": question,
|
@@ -144,6 +153,7 @@ def benchmark_model_multithreaded(model_name, questions, open_router_key, openai
|
|
144 |
st.write(f"<span style='color:green'>Coherence Score: {result['coherence_score']}</span>",
|
145 |
unsafe_allow_html=True)
|
146 |
st.write(f"**Novelty Score:** {result['novelty_score']}")
|
|
|
147 |
elif result["type"] == "summary":
|
148 |
st.write(f"<span style='color:blue'>Total novelty score for question '{result['question']}': {result['total_novelty']}</span>",
|
149 |
unsafe_allow_html=True)
|
|
|
7 |
import streamlit as st # Import Streamlit
|
8 |
import queue
|
9 |
|
|
|
10 |
def generate_answer(question, previous_answers, model_name, open_router_key, openai_api_key):
|
11 |
"""Generates an answer to a question using the specified language model."""
|
12 |
gen_prompt = create_gen_prompt(question, previous_answers)
|
|
|
37 |
|
38 |
def process_question(question, model_name, open_router_key, openai_api_key, result_queue):
|
39 |
start_time = time.time()
|
40 |
+
# st.write(f"<span style='color:red'>{question}</span>", unsafe_allow_html=True)
|
41 |
previous_answers = []
|
42 |
question_novelty = 0
|
43 |
|
|
|
52 |
break
|
53 |
|
54 |
if coherence_score <= 3:
|
55 |
+
# st.write("<span style='color:yellow'>Output is incoherent. Moving to next question.</span>",
|
56 |
+
# unsafe_allow_html=True)
|
57 |
break
|
58 |
|
59 |
novelty_score = get_novelty_score(new_answer, previous_answers, openai_api_key)
|
60 |
|
61 |
if novelty_score < 0.1:
|
62 |
+
# st.write("<span style='color:yellow'>Output is redundant. Moving to next question.</span>",
|
63 |
+
# unsafe_allow_html=True)
|
64 |
break
|
65 |
|
66 |
# Append results to the queue instead of using st.write
|
|
|
69 |
"question": question,
|
70 |
"answer": new_answer,
|
71 |
"coherence_score": coherence_score,
|
72 |
+
"novelty_score": novelty_score,
|
73 |
+
"results": [
|
74 |
+
{
|
75 |
+
"question": question,
|
76 |
+
"answers": previous_answers.copy() + [new_answer], # Include the new answer
|
77 |
+
"coherence_score": coherence_score,
|
78 |
+
"novelty_score": question_novelty + novelty_score # Accumulate novelty score
|
79 |
+
}
|
80 |
+
]
|
81 |
})
|
82 |
|
83 |
previous_answers.append(new_answer)
|
|
|
86 |
except Exception as e:
|
87 |
result_queue.put({"type": "error", "message": str(e)})
|
88 |
|
|
|
89 |
time_taken = time.time() - start_time
|
90 |
result_queue.put({
|
91 |
"type": "summary",
|
|
|
94 |
"time_taken": time_taken
|
95 |
})
|
96 |
|
|
|
97 |
return question_novelty, [
|
98 |
{
|
99 |
"question": question,
|
|
|
153 |
st.write(f"<span style='color:green'>Coherence Score: {result['coherence_score']}</span>",
|
154 |
unsafe_allow_html=True)
|
155 |
st.write(f"**Novelty Score:** {result['novelty_score']}")
|
156 |
+
results.extend(result["results"]) # Add results here
|
157 |
elif result["type"] == "summary":
|
158 |
st.write(f"<span style='color:blue'>Total novelty score for question '{result['question']}': {result['total_novelty']}</span>",
|
159 |
unsafe_allow_html=True)
|