Aidan-Bench / main.py
Presidentlin's picture
x
187c8cf
import numpy as np
from models import chat_with_model, embed
from prompts import create_gen_prompt, create_judge_prompt
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
import threading
import streamlit as st # Import Streamlit
import queue
def generate_answer(question, previous_answers, model_name, open_router_key, openai_api_key,temperature,top_p):
"""Generates an answer to a question using the specified language model."""
gen_prompt = create_gen_prompt(question, previous_answers)
try:
new_answer = chat_with_model(prompt=gen_prompt, model=model_name, open_router_key=open_router_key,
openai_api_key=openai_api_key,temperature=temperature,top_p=top_p)
return new_answer
except Exception as e:
st.error(f"Error generating answer: {str(e)}") # Use st.error
return None
def evaluate_answer(question, new_answer, open_router_key, openai_api_key, judge_model_name,temperature,top_p):
"""Evaluates the coherence and novelty of an answer."""
judge_prompt = create_judge_prompt(question, new_answer)
judge = judge_model_name # Use the judge_model_name passed to the function
try:
judge_response = chat_with_model(prompt=judge_prompt, model=judge, open_router_key=open_router_key,
openai_api_key=openai_api_key,temperature=temperature,top_p=top_p)
coherence_score = int(judge_response.split("<coherence_score>")[1].split("</coherence_score>")[0])
return coherence_score
except Exception as e:
st.error(f"Error getting judge response: {str(e)}") # Use st.error
return None
def process_question(question, model_name, open_router_key, openai_api_key, result_queue, judge_model_name,coherence_threshold,novelty_threshold,temperature,top_p):
start_time = time.time()
previous_answers = []
question_novelty = 0
try:
while True:
new_answer = generate_answer(question, previous_answers, model_name, open_router_key, openai_api_key, temperature,top_p)
if new_answer is None:
break
coherence_score = evaluate_answer(question, new_answer, open_router_key, openai_api_key, judge_model_name,temperature,top_p)
if coherence_score is None:
break
if coherence_score <= coherence_threshold:
break
novelty_score = get_novelty_score(new_answer, previous_answers, openai_api_key)
if novelty_score < novelty_threshold:
break
result_dict = {
"type": "answer",
"question": question,
"answer": new_answer,
"coherence_score": coherence_score,
"novelty_score": novelty_score,
"results": [
{
"question": question,
"answers": previous_answers.copy() + [new_answer],
"coherence_score": coherence_score,
"novelty_score": question_novelty + novelty_score
}
]
}
if result_queue is not None: # Check if result_queue is provided
result_queue.put(result_dict)
yield result_dict # Use yield to return the result immediately
previous_answers.append(new_answer)
question_novelty += novelty_score
except Exception as e:
if result_queue is not None: # Check if result_queue is provided
result_queue.put({"type": "error", "message": str(e)})
time_taken = time.time() - start_time
if result_queue is not None: # Check if result_queue is provided
result_queue.put({
"type": "summary",
"question": question,
"total_novelty": question_novelty,
"time_taken": time_taken
})
return question_novelty, [
{
"question": question,
"answers": previous_answers,
"coherence_score": coherence_score,
"novelty_score": question_novelty
}
]
def get_novelty_score(new_answer: str, previous_answers: list, openai_api_key):
new_embedding = embed(new_answer, openai_api_key)
# If there are no previous answers, return maximum novelty
if not previous_answers:
return 1.0
previous_embeddings = [embed(answer, openai_api_key) for answer in previous_answers]
similarities = [
np.dot(new_embedding, prev_embedding) /
(np.linalg.norm(new_embedding) * np.linalg.norm(prev_embedding))
for prev_embedding in previous_embeddings
]
max_similarity = max(similarities)
novelty = 1 - max_similarity
return novelty
def benchmark_model_multithreaded(model_name, questions, open_router_key, openai_api_key, max_threads=None, judge_model_name=None,coherence_threshold=None,novelty_threshold=None,temperature=0,top_p=0):
novelty_score = 0
results = []
result_queue = queue.Queue() # Create a queue for communication
# Use max_threads if provided, otherwise default to the number of questions
if max_threads is None:
max_workers = len(questions)
else:
max_workers = max_threads
with ThreadPoolExecutor(max_workers=max_workers) as executor:
# Submit tasks to the thread pool
future_to_question = {
executor.submit(process_question, question, model_name, open_router_key, openai_api_key, result_queue, judge_model_name,coherence_threshold,novelty_threshold,temperature,top_p): question
for question in questions
}
# Collect results as they become available from futures and the queue
for future in as_completed(future_to_question):
for result in future.result(): # Iterate over yielded results from process_question
if result["type"] == "answer":
st.write(f"**Question:** {result['question']}")
st.write(f"**New Answer:**\n{result['answer']}")
st.write(f"Coherence Score: {result['coherence_score']}") # st.success for coherence
st.write(f"**Novelty Score:** {result['novelty_score']}")
results.extend(result["results"])
novelty_score += result["novelty_score"]
st.info(f"Total novelty score across all questions (so far): {novelty_score}") # st.info for running total
elif result["type"] == "summary":
st.info(f"Total novelty score for question '{result['question']}': {result['total_novelty']}") # st.info for summary
st.info(f"Time taken: {result['time_taken']} seconds") # st.info for summary
elif result["type"] == "error":
st.error(f"Error in thread: {result['message']}") # st.error for errors
# Process remaining results in the queue (if any)
while not result_queue.empty():
result = result_queue.get()
if result["type"] == "answer":
st.write(f"**Question:** {result['question']}")
st.write(f"**New Answer:**\n{result['answer']}")
st.success(f"Coherence Score: {result['coherence_score']}") # st.success for coherence
st.write(f"**Novelty Score:** {result['novelty_score']}")
results.extend(result["results"]) # Add results here
novelty_score += result["novelty_score"] # Update novelty score
st.warning(f"Total novelty score across all questions (so far): {novelty_score}")
elif result["type"] == "summary":
st.info(f"Total novelty score for question '{result['question']}': {result['total_novelty']}") # st.info for summary
st.info(f"Time taken: {result['time_taken']} seconds") # st.info for summary
elif result["type"] == "error":
st.error(f"Error in thread: {result['message']}") # st.error for errors
st.info(f"Final total novelty score across all questions: {novelty_score}")
return results
def benchmark_model_sequential(model_name, questions, open_router_key, openai_api_key, judge_model_name,coherence_threshold,novelty_threshold,temperature,top_p):
novelty_score = 0
results = []
for i, question in enumerate(questions):
for result in process_question(question, model_name, open_router_key, openai_api_key, None, judge_model_name,coherence_threshold,novelty_threshold,temperature,top_p):
if result["type"] == "answer":
st.write(f"**Question:** {result['question']}")
st.write(f"**New Answer:**\n{result['answer']}")
st.success(f"Coherence Score: {result['coherence_score']}") # st.success for coherence
st.write(f"**Novelty Score:** {result['novelty_score']}")
results.extend(result["results"])
novelty_score += result["novelty_score"] # Add to novelty score
st.success(f"Coherence Score: {result['coherence_score']}") # st.success for coherence
elif result["type"] == "summary":
st.info(f"Total novelty score for question '{result['question']}': {result['total_novelty']}") # st.info for summary
st.info(f"Time taken: {result['time_taken']} seconds") # st.info for summary
elif result["type"] == "error":
st.error(f"Error in thread: {result['message']}") # st.error for errors
st.info(f"Final total novelty score across all questions: {novelty_score}")
return results