Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import fitz # Importing PyMuPDF for PDF text extraction
|
4 |
+
import nltk
|
5 |
+
from gensim.models.doc2vec import Doc2Vec, TaggedDocument
|
6 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
7 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
+
import pandas as pd
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
# Download NLTK data files
|
12 |
+
nltk.download('punkt')
|
13 |
+
nltk.download('stopwords')
|
14 |
+
|
15 |
+
# Function to preprocess text
|
16 |
+
def preprocess_text(text):
|
17 |
+
text = re.sub(r'\W+', ' ', text.lower()) # Remove non-alphanumeric characters and lower case
|
18 |
+
return text
|
19 |
+
|
20 |
+
# Function to extract keywords using TF-IDF
|
21 |
+
def extract_keywords_tfidf(text, max_features=50):
|
22 |
+
vectorizer = TfidfVectorizer(stop_words='english', max_features=max_features)
|
23 |
+
tfidf_matrix = vectorizer.fit_transform([text])
|
24 |
+
feature_names = vectorizer.get_feature_names_out()
|
25 |
+
tfidf_scores = tfidf_matrix.toarray().flatten()
|
26 |
+
keyword_scores = sorted(zip(tfidf_scores, feature_names), reverse=True)
|
27 |
+
return [keyword for score, keyword in keyword_scores]
|
28 |
+
|
29 |
+
# Function to extract text from a PDF
|
30 |
+
def extract_text_from_pdf(pdf_path):
|
31 |
+
document = fitz.open(pdf_path)
|
32 |
+
text = ""
|
33 |
+
for page_num in range(len(document)):
|
34 |
+
page = document.load_page(page_num)
|
35 |
+
text += page.get_text()
|
36 |
+
return text
|
37 |
+
|
38 |
+
# Function to give feedback on resume
|
39 |
+
def give_feedback(resume_text, job_description):
|
40 |
+
feedback = []
|
41 |
+
|
42 |
+
# Check formatting (example: consistency in bullet points)
|
43 |
+
if '•' in resume_text and '-' in resume_text:
|
44 |
+
feedback.append("Consider using a consistent bullet point style throughout your resume.")
|
45 |
+
|
46 |
+
# Check for grammar and spelling
|
47 |
+
if not any(re.findall(r'\bexperience\b|\beducation\b|\bskills\b', resume_text.lower())):
|
48 |
+
feedback.append("Make sure your resume includes sections like Experience, Education, and Skills.")
|
49 |
+
|
50 |
+
# Extract keywords and check relevance
|
51 |
+
jd_keywords = extract_keywords_tfidf(preprocess_text(job_description))
|
52 |
+
resume_keywords = extract_keywords_tfidf(preprocess_text(resume_text))
|
53 |
+
|
54 |
+
common_keywords = set(jd_keywords).intersection(set(resume_keywords))
|
55 |
+
if len(common_keywords) < 8:
|
56 |
+
feedback.append(f"Your resume could better match the job description. Consider adding keywords such as: {', '.join(jd_keywords[:5])}.")
|
57 |
+
|
58 |
+
# Check for action verbs
|
59 |
+
action_verbs = ["managed", "led", "developed", "designed", "implemented", "created"]
|
60 |
+
if not any(verb in resume_text.lower() for verb in action_verbs):
|
61 |
+
feedback.append("Consider using strong action verbs to describe your achievements and responsibilities.")
|
62 |
+
|
63 |
+
if not re.search(r'\bsummary\b|\bobjective\b', resume_text, re.IGNORECASE):
|
64 |
+
feedback.append("Consider adding a professional summary or objective statement to provide a quick overview of your qualifications.")
|
65 |
+
|
66 |
+
# Check for quantifiable achievements
|
67 |
+
if not re.findall(r'\d+', resume_text):
|
68 |
+
feedback.append("Include quantifiable achievements in your experience section (e.g., increased sales by 20%).")
|
69 |
+
|
70 |
+
# Provide positive feedback if none of the above conditions are met
|
71 |
+
if not feedback:
|
72 |
+
feedback.append("Your resume is well-aligned with the job description. Ensure to keep it updated with relevant keywords and achievements.")
|
73 |
+
|
74 |
+
return feedback
|
75 |
+
|
76 |
+
# Function to calculate TF-IDF cosine similarity score
|
77 |
+
def tfidf_cosine_similarity(resume, jd):
|
78 |
+
documents = [resume, jd]
|
79 |
+
vectorizer = TfidfVectorizer()
|
80 |
+
tfidf_matrix = vectorizer.fit_transform(documents)
|
81 |
+
|
82 |
+
cosine_sim = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:2])
|
83 |
+
return cosine_sim[0][0]
|
84 |
+
|
85 |
+
# Function to calculate Doc2Vec cosine similarity score
|
86 |
+
def doc2vec_cosine_similarity(resume, jd, model):
|
87 |
+
resume_vector = model.infer_vector(resume.split())
|
88 |
+
jd_vector = model.infer_vector(jd.split())
|
89 |
+
|
90 |
+
cosine_sim = cosine_similarity([resume_vector], [jd_vector])
|
91 |
+
return cosine_sim[0][0]
|
92 |
+
|
93 |
+
# Function to extract years of experience from resume
|
94 |
+
def extract_years_of_experience(text):
|
95 |
+
years = re.findall(r'(\d+)\s+year[s]*', text, re.IGNORECASE)
|
96 |
+
if years:
|
97 |
+
return sum(map(int, years))
|
98 |
+
return 0
|
99 |
+
|
100 |
+
# Function to extract information from resumes in a folder
|
101 |
+
def extract_info_from_resumes(resume_files, job_description):
|
102 |
+
data = []
|
103 |
+
|
104 |
+
# Train Doc2Vec model on resumes and job description
|
105 |
+
documents = []
|
106 |
+
for file in resume_files:
|
107 |
+
text = extract_text_from_pdf(file.name)
|
108 |
+
documents.append(preprocess_text(text))
|
109 |
+
|
110 |
+
documents.append(preprocess_text(job_description))
|
111 |
+
tagged_docs = [TaggedDocument(doc.split(), [i]) for i, doc in enumerate(documents)]
|
112 |
+
model = Doc2Vec(tagged_docs, vector_size=50, window=2, min_count=1, workers=4)
|
113 |
+
|
114 |
+
for file in resume_files:
|
115 |
+
text = extract_text_from_pdf(file.name)
|
116 |
+
|
117 |
+
preprocessed_text = preprocess_text(text)
|
118 |
+
resume_keywords = extract_keywords_tfidf(preprocessed_text)
|
119 |
+
years_of_experience = extract_years_of_experience(text)
|
120 |
+
|
121 |
+
# Append years of experience to the resume keywords
|
122 |
+
if years_of_experience > 0:
|
123 |
+
resume_keywords.append(f"{years_of_experience} years experience")
|
124 |
+
|
125 |
+
name = os.path.splitext(os.path.basename(file.name))[0]
|
126 |
+
|
127 |
+
feedback = give_feedback(text, job_description)
|
128 |
+
|
129 |
+
# Calculate scores
|
130 |
+
jd_keywords = extract_keywords_tfidf(preprocess_text(job_description))
|
131 |
+
common_keywords = set(jd_keywords).intersection(set(resume_keywords))
|
132 |
+
keyword_match_score = len(common_keywords) # Count of common keywords as a whole number
|
133 |
+
tfidf_score = tfidf_cosine_similarity(text, job_description)
|
134 |
+
doc2vec_score = doc2vec_cosine_similarity(preprocessed_text, preprocess_text(job_description), model)
|
135 |
+
|
136 |
+
data.append({
|
137 |
+
'Name': name,
|
138 |
+
'Keyword_Match_Score': keyword_match_score, # Whole number
|
139 |
+
'TFIDF_Score': tfidf_score,
|
140 |
+
'Doc2Vec_Score': doc2vec_score,
|
141 |
+
'Years_of_Experience': years_of_experience,
|
142 |
+
'Feedback': '; '.join(feedback), # Combine feedback into a single string
|
143 |
+
})
|
144 |
+
|
145 |
+
return data
|
146 |
+
|
147 |
+
# Function to save data to an Excel file
|
148 |
+
def save_to_excel(data, output_file):
|
149 |
+
df = pd.DataFrame(data)
|
150 |
+
try:
|
151 |
+
df.to_excel(output_file, index=False)
|
152 |
+
return output_file
|
153 |
+
except Exception as e:
|
154 |
+
return f"Error saving file: {e}"
|
155 |
+
|
156 |
+
# Gradio interface function
|
157 |
+
def gradio_interface(resume_files, job_description):
|
158 |
+
if resume_files:
|
159 |
+
output_file = '/content/Resume_Analysis.xlsx'
|
160 |
+
resumes = extract_info_from_resumes(resume_files, job_description)
|
161 |
+
result = save_to_excel(resumes, output_file)
|
162 |
+
else:
|
163 |
+
result = "No resumes to process."
|
164 |
+
|
165 |
+
return result
|
166 |
+
|
167 |
+
|
168 |
+
# Gradio UI setup
|
169 |
+
iface = gr.Interface(
|
170 |
+
fn=gradio_interface,
|
171 |
+
inputs=[
|
172 |
+
gr.Files(label="Upload multiple Resumes", type="filepath"), # Accept multiple file uploads
|
173 |
+
gr.Textbox(label="Job Description", lines=5, placeholder="Enter the job description here...")
|
174 |
+
],
|
175 |
+
outputs=gr.File(label="Download Results"), # Provide the output file
|
176 |
+
|
177 |
+
description="Upload multiple resume PDFs and provide a job description to analyze the resumes and get an Excel file with the results."
|
178 |
+
)
|
179 |
+
|
180 |
+
# Launch the Gradio interface
|
181 |
+
iface.launch()
|