Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,5 @@
|
|
1 |
from PIL import Image
|
2 |
-
import requests
|
3 |
import gradio as gr
|
4 |
-
|
5 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
6 |
|
7 |
model_id = "Salesforce/blip-image-captioning-base"
|
@@ -9,11 +7,21 @@ model_id = "Salesforce/blip-image-captioning-base"
|
|
9 |
model = BlipForConditionalGeneration.from_pretrained(model_id)
|
10 |
processor = BlipProcessor.from_pretrained(model_id)
|
11 |
|
12 |
-
def
|
13 |
-
image
|
|
|
|
|
|
|
14 |
inputs = processor(image, return_tensors="pt")
|
|
|
|
|
15 |
out = model.generate(**inputs)
|
|
|
|
|
16 |
return processor.decode(out[0], skip_special_tokens=True)
|
17 |
|
18 |
-
|
19 |
-
iface.
|
|
|
|
|
|
|
|
1 |
from PIL import Image
|
|
|
2 |
import gradio as gr
|
|
|
3 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
4 |
|
5 |
model_id = "Salesforce/blip-image-captioning-base"
|
|
|
7 |
model = BlipForConditionalGeneration.from_pretrained(model_id)
|
8 |
processor = BlipProcessor.from_pretrained(model_id)
|
9 |
|
10 |
+
def generate_caption(image_path):
|
11 |
+
# Load the image directly from the path
|
12 |
+
image = Image.open(image_path).convert('RGB')
|
13 |
+
|
14 |
+
# Process the image to generate tensor inputs
|
15 |
inputs = processor(image, return_tensors="pt")
|
16 |
+
|
17 |
+
# Generate caption for the image
|
18 |
out = model.generate(**inputs)
|
19 |
+
|
20 |
+
# Decode and return the generated caption
|
21 |
return processor.decode(out[0], skip_special_tokens=True)
|
22 |
|
23 |
+
# Gradio interface setup to accept image input and produce text output
|
24 |
+
iface = gr.Interface(generate_caption, inputs="image", outputs="text")
|
25 |
+
|
26 |
+
# Launch the interface
|
27 |
+
iface.launch()
|