|
from huggingface_hub import InferenceClient |
|
import gradio as gr |
|
import random |
|
|
|
client = InferenceClient("google/gemma-2b-it") |
|
|
|
def format_prompt(message, history): |
|
prompt = "" |
|
if history: |
|
for user_prompt, bot_response in history: |
|
prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>" |
|
prompt += f"<start_of_turn>model{bot_response}" |
|
prompt += f"<start_of_turn>user{message}<end_of_turn><start_of_turn>model" |
|
return prompt |
|
|
|
|
|
def generate(prompt, history, temperature=0.7, max_new_tokens=1024, top_p=0.90, repetition_penalty=0.9): |
|
temperature = float(temperature) |
|
if temperature < 1e-2: |
|
temperature = 1e-2 |
|
top_p = float(top_p) |
|
|
|
if not history: |
|
history = [] |
|
|
|
rand_seed = random.randint(1, 1111111111111111) |
|
|
|
generate_kwargs = dict( |
|
temperature=temperature, |
|
max_new_tokens=max_new_tokens, |
|
top_p=top_p, |
|
repetition_penalty=repetition_penalty, |
|
do_sample=True, |
|
seed=rand_seed, |
|
) |
|
|
|
formatted_prompt = format_prompt(prompt, history) |
|
|
|
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) |
|
output = "" |
|
|
|
for response in stream: |
|
output += response.token.text |
|
yield output |
|
history.append((prompt, output)) |
|
return output |
|
|
|
|
|
mychatbot = gr.Chatbot( |
|
avatar_images=["./user.png", "./botgm.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True,) |
|
|
|
additional_inputs=[ |
|
gr.Slider( |
|
label="Temperature", |
|
value=0.7, |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.01, |
|
interactive=True, |
|
info="Higher values generate more diverse outputs", |
|
), |
|
gr.Slider( |
|
label="Max new tokens", |
|
value=6400, |
|
minimum=0, |
|
maximum=8000, |
|
step=64, |
|
interactive=True, |
|
info="The maximum numbers of new tokens", |
|
), |
|
gr.Slider( |
|
label="Top-p", |
|
value=0.90, |
|
minimum=0.0, |
|
maximum=1, |
|
step=0.01, |
|
interactive=True, |
|
info="Higher values sample more low-probability tokens", |
|
), |
|
gr.Slider( |
|
label="Repetition penalty", |
|
value=1.0, |
|
minimum=0.1, |
|
maximum=2.0, |
|
step=0.1, |
|
interactive=True, |
|
info="Penalize repeated tokens", |
|
) |
|
] |
|
|
|
iface = gr.ChatInterface(fn=generate, |
|
chatbot=mychatbot, |
|
additional_inputs=additional_inputs, |
|
retry_btn=None, |
|
undo_btn=None |
|
) |
|
|
|
with gr.Blocks() as demo: |
|
gr.HTML("<center><h1>My Gemma Chatbot</h1></center>") |
|
iface.render() |
|
|
|
demo.queue().launch(show_api=False) |