import pixeltable as pxt import os import openai import gradio as gr import getpass from pixeltable.iterators import FrameIterator from pixeltable.functions.video import extract_audio from pixeltable.functions.audio import get_metadata from pixeltable.functions import openai if 'OPENAI_API_KEY' not in os.environ: os.environ['OPENAI_API_KEY'] = getpass.getpass('Enter your OpenAI API key:') pxt.drop_dir('directory', force=True) pxt.create_dir('directory') t = pxt.create_table( 'directory.video_table', { "video": pxt.VideoType(nullable=True), "sm_type": pxt.StringType(nullable=True), } ) frames_view = pxt.create_view( "directory.frames", t, iterator=FrameIterator.create(video=t.video, num_frames=20) ) # Create computed columns to store transformations and persist outputs t['audio'] = extract_audio(t.video, format='mp3') t['metadata'] = get_metadata(t.audio) t['transcription'] = openai.transcriptions(audio=t.audio, model='whisper-1') t['transcription_text'] = t.transcription.text @pxt.udf def prompt(A: str, B: str) -> list[dict]: return [ {'role': 'system', 'content': 'You are an expert in creating social media content and you generate effective post, based on the video transcript and the type of social media asked for. Please respect the limitations in terms of characters and size of each social media platform'}, {'role': 'user', 'content': f'A: "{A}" \n B: "{B}"'} ] t['message'] = prompt(t.sm_type, t.transcription_text) t['response'] = openai.chat_completions(messages=t.message, model='gpt-4o-mini-2024-07-18', max_tokens=500) t['answer'] = t.response.choices[0].message.content MAX_VIDEO_SIZE_MB = 35 def process_and_generate_post(video_file, social_media_type): if not video_file: return "Please upload a video file.", None try: # Check video file size video_size = os.path.getsize(video_file) / (1024 * 1024) # Convert to MB if video_size > MAX_VIDEO_SIZE_MB: return f"The video file is larger than {MAX_VIDEO_SIZE_MB} MB. Please upload a smaller file.", None # Insert video in PixelTable t.insert([{ "video": video_file, "sm_type": social_media_type }]) # Retrieve Social media posts social_media_post = t.select(t.answer).tail(1)['answer'][0] # Retrieve thumbnails frames = frames_view.select(frames_view.frame).tail(4) thumbnails = [frame['frame'] for frame in frames] #Display content return social_media_post, thumbnails except Exception as e: return f"An error occurred: {str(e)}", None # Gradio Interface import gradio as gr def gradio_interface(): with gr.Blocks(theme=gr.themes.Glass()) as demo: gr.Markdown( """

Video to Social Media Post Generator

Pixeltable

Pixeltable is a declarative interface for working with text, images, embeddings, and even video, enabling you to store, transform, index, and iterate on data.

""" ) with gr.Row(): with gr.Column(): video_input = gr.Video( label=f"Upload Video File (max {MAX_VIDEO_SIZE_MB} MB):", include_audio=True, max_length=300, height='400px', autoplay=True ) social_media_type = gr.Dropdown( choices=["X (Twitter)", "Facebook", "LinkedIn", "Instagram"], label="Select Social Media Platform:", value="X (Twitter)", ) generate_btn = gr.Button("Generate Post") with gr.Column(): output = gr.Textbox(label="Generated Social Media Post", show_copy_button=True) thumbnail = gr.Gallery( label="Pick your favorite Post Thumbnail", show_download_button=True, show_fullscreen_button=True, height='400px' ) gr.Examples( examples=[["example1.mp4"], ["example2.mp4"], ["example3.mp4"]], inputs=[video_input] ) generate_btn.click( fn=process_and_generate_post, inputs=[video_input, social_media_type], outputs=[output, thumbnail], ) return demo # Launch the Gradio interface if __name__ == "__main__": gradio_interface().launch(show_api=False)