Spaces:
Sleeping
Sleeping
pminervini
commited on
Commit
·
5f90f73
1
Parent(s):
1e5558f
update
Browse files- app.py +49 -46
- requirements.txt +1 -0
app.py
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
|
|
|
|
|
|
|
4 |
import torch
|
5 |
from transformers import pipeline, StoppingCriteria, StoppingCriteriaList, MaxTimeCriteria, AutoTokenizer, AutoModelForCausalLM, PreTrainedTokenizer, BitsAndBytesConfig
|
6 |
from openai import OpenAI
|
@@ -56,8 +59,52 @@ def search(query, index="pubmed", num_docs=3):
|
|
56 |
|
57 |
return docs
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
def analyse(reference: str, passage: str) -> str:
|
60 |
-
import vllm
|
61 |
fava_input = "Read the following references:\n{evidence}\nPlease identify all the errors in the following text using the information in the references provided and suggest edits if necessary:\n[Text] {output}\n[Edited] "
|
62 |
prompt = [fava_input.format_map({"evidence": reference, "output": passage})]
|
63 |
|
@@ -105,51 +152,7 @@ def rag_pipeline(prompt, index="pubmed", num_docs=3, model_name="HuggingFaceH4/z
|
|
105 |
}
|
106 |
]
|
107 |
|
108 |
-
|
109 |
-
print('MSG', message)
|
110 |
-
|
111 |
-
max_new_tokens = 1024
|
112 |
-
|
113 |
-
if model_name.startswith('openai/'):
|
114 |
-
openai_model_name = model_name.split('/')[1]
|
115 |
-
|
116 |
-
client = OpenAI()
|
117 |
-
openai_res = client.chat.completions.create(model=openai_model_name,
|
118 |
-
messages=messages,
|
119 |
-
max_tokens=max_new_tokens,
|
120 |
-
temperature=0)
|
121 |
-
print('OAI_RESPONSE', openai_res)
|
122 |
-
response = openai_res.choices[0].message.content.strip()
|
123 |
-
else:
|
124 |
-
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16)
|
125 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", low_cpu_mem_usage=True, quantization_config=quantization_config)
|
126 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
127 |
-
|
128 |
-
# Load your language model from HuggingFace Transformers
|
129 |
-
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
130 |
-
|
131 |
-
tokenized_prompt = tokenizer.apply_chat_template(messages, tokenize=True)
|
132 |
-
|
133 |
-
# Define the stopping criteria using MaxTimeCriteria
|
134 |
-
stopping_criteria = StoppingCriteriaList([
|
135 |
-
# MaxTimeCriteria(32),
|
136 |
-
MultiTokenEOSCriteria("\n", tokenizer, len(tokenized_prompt))
|
137 |
-
])
|
138 |
-
|
139 |
-
# Define the generation_kwargs with stopping criteria
|
140 |
-
generation_kwargs = {
|
141 |
-
"max_new_tokens": max_new_tokens,
|
142 |
-
"generation_kwargs": {"stopping_criteria": stopping_criteria},
|
143 |
-
"return_full_text": False
|
144 |
-
}
|
145 |
-
|
146 |
-
# Generate response using the HF LLM
|
147 |
-
hf_response = generator(messages, **generation_kwargs)
|
148 |
-
|
149 |
-
print('HF_RESPONSE', hf_response)
|
150 |
-
response = hf_response[0]['generated_text']
|
151 |
-
|
152 |
-
model = tokenizer = None
|
153 |
|
154 |
# analysed_response = analyse(joined_docs, response)
|
155 |
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
|
4 |
+
import ray
|
5 |
+
import vllm
|
6 |
+
|
7 |
import torch
|
8 |
from transformers import pipeline, StoppingCriteria, StoppingCriteriaList, MaxTimeCriteria, AutoTokenizer, AutoModelForCausalLM, PreTrainedTokenizer, BitsAndBytesConfig
|
9 |
from openai import OpenAI
|
|
|
59 |
|
60 |
return docs
|
61 |
|
62 |
+
@ray.remote(num_gpus=1, max_calls=1)
|
63 |
+
def generate(model_name: str, messages):
|
64 |
+
max_new_tokens = 1024
|
65 |
+
|
66 |
+
if model_name.startswith('openai/'):
|
67 |
+
openai_model_name = model_name.split('/')[1]
|
68 |
+
|
69 |
+
client = OpenAI()
|
70 |
+
openai_res = client.chat.completions.create(model=openai_model_name,
|
71 |
+
messages=messages,
|
72 |
+
max_tokens=max_new_tokens,
|
73 |
+
temperature=0)
|
74 |
+
print('OAI_RESPONSE', openai_res)
|
75 |
+
response = openai_res.choices[0].message.content.strip()
|
76 |
+
else:
|
77 |
+
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16)
|
78 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", low_cpu_mem_usage=True, quantization_config=quantization_config)
|
79 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
80 |
+
|
81 |
+
# Load your language model from HuggingFace Transformers
|
82 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
83 |
+
|
84 |
+
tokenized_prompt = tokenizer.apply_chat_template(messages, tokenize=True)
|
85 |
+
|
86 |
+
# Define the stopping criteria using MaxTimeCriteria
|
87 |
+
stopping_criteria = StoppingCriteriaList([
|
88 |
+
# MaxTimeCriteria(32),
|
89 |
+
MultiTokenEOSCriteria("\n", tokenizer, len(tokenized_prompt))
|
90 |
+
])
|
91 |
+
|
92 |
+
# Define the generation_kwargs with stopping criteria
|
93 |
+
generation_kwargs = {
|
94 |
+
"max_new_tokens": max_new_tokens,
|
95 |
+
"generation_kwargs": {"stopping_criteria": stopping_criteria},
|
96 |
+
"return_full_text": False
|
97 |
+
}
|
98 |
+
|
99 |
+
# Generate response using the HF LLM
|
100 |
+
hf_response = generator(messages, **generation_kwargs)
|
101 |
+
|
102 |
+
print('HF_RESPONSE', hf_response)
|
103 |
+
response = hf_response[0]['generated_text']
|
104 |
+
return response
|
105 |
+
|
106 |
+
@ray.remote(num_gpus=1, max_calls=1)
|
107 |
def analyse(reference: str, passage: str) -> str:
|
|
|
108 |
fava_input = "Read the following references:\n{evidence}\nPlease identify all the errors in the following text using the information in the references provided and suggest edits if necessary:\n[Text] {output}\n[Edited] "
|
109 |
prompt = [fava_input.format_map({"evidence": reference, "output": passage})]
|
110 |
|
|
|
152 |
}
|
153 |
]
|
154 |
|
155 |
+
response = generate(model_name, messages)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
# analysed_response = analyse(joined_docs, response)
|
158 |
|
requirements.txt
CHANGED
@@ -5,3 +5,4 @@ transformers
|
|
5 |
elasticsearch
|
6 |
openai
|
7 |
vllm
|
|
|
|
5 |
elasticsearch
|
6 |
openai
|
7 |
vllm
|
8 |
+
ray
|