Spaces:
Paused
Paused
Diksha2001
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,66 @@
|
|
1 |
import gradio as gr
|
2 |
import json
|
3 |
import subprocess
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
"epochs": epochs,
|
14 |
-
"model_name": model_name
|
15 |
-
}
|
16 |
-
}
|
17 |
|
|
|
|
|
18 |
try:
|
19 |
-
#
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
process = subprocess.Popen(
|
22 |
-
['python3', 'handler.py', '--test_input',
|
23 |
stdout=subprocess.PIPE,
|
24 |
stderr=subprocess.PIPE,
|
25 |
text=True
|
26 |
)
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
handler_output = None
|
32 |
-
for line in
|
33 |
try:
|
34 |
parsed_line = json.loads(line)
|
35 |
if isinstance(parsed_line, dict) and "status" in parsed_line:
|
@@ -37,119 +68,120 @@ def run_pipeline(pdf_file, system_prompt, max_step, learning_rate, epochs, model
|
|
37 |
break
|
38 |
except json.JSONDecodeError:
|
39 |
continue
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
# Check the status in the parsed JSON
|
45 |
-
if handler_output.get("status") == "success":
|
46 |
-
# Extract and format the result
|
47 |
-
model_name = handler_output.get("model_name", "N/A")
|
48 |
-
processing_time = handler_output.get("processing_time", "N/A")
|
49 |
-
evaluation_results = handler_output.get("evaluation_results", {})
|
50 |
-
|
51 |
return {
|
52 |
-
"model_name": model_name,
|
53 |
-
"processing_time": processing_time,
|
54 |
-
"evaluation_results": evaluation_results
|
55 |
}
|
56 |
else:
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
except Exception as e:
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
65 |
|
66 |
-
# Define Gradio interface
|
67 |
with gr.Blocks(css='''
|
68 |
.gradio-container {
|
69 |
-
background-color: #121212;
|
70 |
-
color: #
|
71 |
-
|
72 |
-
|
73 |
}
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
77 |
}
|
78 |
-
|
79 |
-
|
80 |
-
input
|
81 |
-
background-color: #
|
82 |
-
|
83 |
-
color: #000; /* Black text inside the inputs */
|
84 |
-
border-radius: 8px;
|
85 |
-
padding: 10px;
|
86 |
-
font-size: 16px;
|
87 |
-
width: 100%;
|
88 |
-
box-sizing: border-box;
|
89 |
}
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
/* Button styling */
|
97 |
-
button {
|
98 |
-
background-color: #4CAF50; /* Green button */
|
99 |
-
color: white;
|
100 |
-
border: none;
|
101 |
-
padding: 12px 20px;
|
102 |
-
cursor: pointer;
|
103 |
-
font-weight: bold;
|
104 |
-
font-size: 16px;
|
105 |
-
transition: background-color 0.3s ease;
|
106 |
-
border-radius: 8px;
|
107 |
}
|
108 |
-
|
109 |
-
|
110 |
-
background-color: #3e8e41; /* Darker green hover effect */
|
111 |
}
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
background-color: #333; /* Dark background for JSON output */
|
116 |
-
border: 1px solid #444; /* Slightly lighter border */
|
117 |
-
padding: 12px;
|
118 |
-
font-size: 14px;
|
119 |
-
max-height: 300px;
|
120 |
-
overflow-y: auto;
|
121 |
-
margin-top: 10px;
|
122 |
-
color: #f1f1f1; /* Light text color */
|
123 |
}
|
124 |
-
|
125 |
-
|
126 |
-
.gr-row .gr-textbox, .gr-row .gr-number {
|
127 |
-
margin-bottom: 15px;
|
128 |
}
|
129 |
''') as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
learning_rate = gr.Number(
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
result_output = gr.JSON(label="Pipeline Results")
|
152 |
-
run_button = gr.Button("Run Pipeline")
|
153 |
|
154 |
# Trigger the function when the button is clicked
|
155 |
run_button.click(
|
@@ -159,4 +191,4 @@ with gr.Blocks(css='''
|
|
159 |
)
|
160 |
|
161 |
# Run Gradio app
|
162 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import json
|
3 |
import subprocess
|
4 |
+
import logging
|
5 |
+
import sys
|
6 |
+
import io
|
7 |
+
import threading
|
8 |
+
import queue
|
9 |
+
from contextlib import redirect_stdout, redirect_stderr
|
10 |
|
11 |
+
class LiveLogHandler(logging.Handler):
|
12 |
+
def __init__(self, log_queue):
|
13 |
+
super().__init__()
|
14 |
+
self.log_queue = log_queue
|
15 |
+
|
16 |
+
def emit(self, record):
|
17 |
+
msg = self.format(record)
|
18 |
+
self.log_queue.put(msg)
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
|
21 |
+
def run_pipeline(pdf_file, system_prompt, max_step, learning_rate, epochs, model_name):
|
22 |
try:
|
23 |
+
# Construct job input
|
24 |
+
data = {
|
25 |
+
"input": {
|
26 |
+
"pdf_file": pdf_file.name,
|
27 |
+
"system_prompt": system_prompt,
|
28 |
+
"max_step": max_step,
|
29 |
+
"learning_rate": learning_rate,
|
30 |
+
"epochs": epochs,
|
31 |
+
"model_name": model_name
|
32 |
+
}
|
33 |
+
}
|
34 |
+
|
35 |
+
# Print the start of pipeline to terminal
|
36 |
+
print("Pipeline started with inputs:", json.dumps(data, indent=2))
|
37 |
+
|
38 |
+
# Run the handler in a separate process
|
39 |
process = subprocess.Popen(
|
40 |
+
['python3', 'handler.py', '--test_input', json.dumps(data)],
|
41 |
stdout=subprocess.PIPE,
|
42 |
stderr=subprocess.PIPE,
|
43 |
text=True
|
44 |
)
|
45 |
+
|
46 |
+
# Read output in real-time and print to terminal
|
47 |
+
stdout_lines = []
|
48 |
+
stderr_lines = []
|
49 |
+
|
50 |
+
for line in process.stdout:
|
51 |
+
print(line.strip()) # Print stdout to terminal
|
52 |
+
stdout_lines.append(line.strip())
|
53 |
+
|
54 |
+
for line in process.stderr:
|
55 |
+
print(f"ERROR: {line.strip()}") # Print stderr to terminal
|
56 |
+
stderr_lines.append(line.strip())
|
57 |
+
|
58 |
+
# Wait for process to complete
|
59 |
+
process.wait()
|
60 |
+
|
61 |
+
# Try to extract JSON result
|
62 |
handler_output = None
|
63 |
+
for line in stdout_lines:
|
64 |
try:
|
65 |
parsed_line = json.loads(line)
|
66 |
if isinstance(parsed_line, dict) and "status" in parsed_line:
|
|
|
68 |
break
|
69 |
except json.JSONDecodeError:
|
70 |
continue
|
71 |
+
|
72 |
+
# Prepare result
|
73 |
+
if handler_output and handler_output.get("status") == "success":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
return {
|
75 |
+
"model_name": handler_output.get("model_name", "N/A"),
|
76 |
+
"processing_time": handler_output.get("processing_time", "N/A"),
|
77 |
+
"evaluation_results": handler_output.get("evaluation_results", {})
|
78 |
}
|
79 |
else:
|
80 |
+
return {
|
81 |
+
"status": "error",
|
82 |
+
"details": handler_output or "No valid output received"
|
83 |
+
}
|
84 |
+
|
85 |
except Exception as e:
|
86 |
+
print(f"Pipeline execution error: {str(e)}")
|
87 |
+
return {
|
88 |
+
"status": "error",
|
89 |
+
"details": str(e)
|
90 |
+
}
|
91 |
|
92 |
+
# Define Gradio interface with dark theme and light blue buttons
|
93 |
with gr.Blocks(css='''
|
94 |
.gradio-container {
|
95 |
+
background-color: #121212;
|
96 |
+
color: #e0e0e0;
|
97 |
+
max-width: 800px;
|
98 |
+
margin: 0 auto;
|
99 |
}
|
100 |
+
.custom-input {
|
101 |
+
min-height: 50px;
|
102 |
+
height: auto;
|
103 |
+
background-color: #1e1e1e !important;
|
104 |
+
color: #e0e0e0 !important;
|
105 |
+
border: 1px solid #333 !important;
|
106 |
}
|
107 |
+
.custom-input textarea,
|
108 |
+
.custom-input input,
|
109 |
+
.custom-input .upload-icon {
|
110 |
+
background-color: #1e1e1e !important;
|
111 |
+
color: #e0e0e0 !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
}
|
113 |
+
.gr-button {
|
114 |
+
background-color: #87CEFA !important; /* Light Sky Blue */
|
115 |
+
color: #121212 !important;
|
116 |
+
border: none !important;
|
117 |
+
font-weight: bold !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
}
|
119 |
+
.gr-button:hover {
|
120 |
+
background-color: #87CEEB !important; /* Slightly different light blue on hover */
|
|
|
121 |
}
|
122 |
+
.gr-form {
|
123 |
+
background-color: #1e1e1e !important;
|
124 |
+
border-color: #333 !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
}
|
126 |
+
.gr-label {
|
127 |
+
color: #87CEFA !important; /* Light Sky Blue for labels */
|
|
|
|
|
128 |
}
|
129 |
''') as demo:
|
130 |
+
# Add Heading at the top, centered and light blue
|
131 |
+
title = "🤖 Fine-tuning Pipeline Configurator"
|
132 |
+
header_style = "color: #87CEFA;" # Light Sky Blue
|
133 |
+
|
134 |
+
html_content = f"""
|
135 |
+
<div style="text-align: center;">
|
136 |
+
<h2><span style="{header_style}">{title}</span></h2>
|
137 |
+
</div>
|
138 |
+
"""
|
139 |
+
|
140 |
+
gr.Markdown(html_content)
|
141 |
+
|
142 |
+
with gr.Column(scale=1):
|
143 |
+
# System Prompt with consistent styling
|
144 |
+
system_prompt = gr.Textbox(
|
145 |
+
label="System Prompt",
|
146 |
+
placeholder="Enter system instructions",
|
147 |
+
lines=4,
|
148 |
+
elem_classes=['custom-input'],
|
149 |
+
value="You are a helpful assistant that provides detailed information based on the provided text."
|
150 |
+
)
|
151 |
|
152 |
+
# Numeric and model name inputs in a row with consistent styling
|
153 |
+
with gr.Row():
|
154 |
+
# PDF File Upload
|
155 |
+
pdf_file = gr.File(
|
156 |
+
label="Upload PDF",
|
157 |
+
file_types=[".pdf"],
|
158 |
+
elem_classes=['custom-input']
|
159 |
+
)
|
160 |
+
|
161 |
+
max_step = gr.Number(
|
162 |
+
label="Max Steps",
|
163 |
+
value=150,
|
164 |
+
elem_classes=['custom-input']
|
165 |
+
)
|
166 |
+
learning_rate = gr.Number(
|
167 |
+
label="Learning Rate",
|
168 |
+
value=2e-4,
|
169 |
+
elem_classes=['custom-input']
|
170 |
+
)
|
171 |
+
epochs = gr.Number(
|
172 |
+
label="Epochs",
|
173 |
+
value=10,
|
174 |
+
elem_classes=['custom-input']
|
175 |
+
)
|
176 |
+
model_name = gr.Textbox(
|
177 |
+
label="Model Name",
|
178 |
+
placeholder="Enter model name",
|
179 |
+
elem_classes=['custom-input']
|
180 |
+
)
|
181 |
+
|
182 |
+
# Results and Run Button
|
183 |
result_output = gr.JSON(label="Pipeline Results")
|
184 |
+
run_button = gr.Button("Run Pipeline", variant="primary")
|
185 |
|
186 |
# Trigger the function when the button is clicked
|
187 |
run_button.click(
|
|
|
191 |
)
|
192 |
|
193 |
# Run Gradio app
|
194 |
+
demo.launch(share=True)
|