# import whisper from faster_whisper import WhisperModel import datetime import subprocess import gradio as gr from pathlib import Path import pandas as pd import re import time import os import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.metrics import silhouette_score from pytube import YouTube import yt_dlp import torch import pyannote.audio from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding from pyannote.audio import Audio from pyannote.core import Segment from gpuinfo import GPUInfo import wave import contextlib from transformers import pipeline import psutil whisper_models = ["tiny", "base", "small", "medium", "large-v1", "large-v2"] source_languages = { "en": "English", "zh": "Chinese", "de": "German", "es": "Spanish", "ru": "Russian", "ko": "Korean", "fr": "French", "ja": "Japanese", "pt": "Portuguese", "tr": "Turkish", "pl": "Polish", "ca": "Catalan", "nl": "Dutch", "ar": "Arabic", "sv": "Swedish", "it": "Italian", "id": "Indonesian", "hi": "Hindi", "fi": "Finnish", "vi": "Vietnamese", "he": "Hebrew", "uk": "Ukrainian", "el": "Greek", "ms": "Malay", "cs": "Czech", "ro": "Romanian", "da": "Danish", "hu": "Hungarian", "ta": "Tamil", "no": "Norwegian", "th": "Thai", "ur": "Urdu", "hr": "Croatian", "bg": "Bulgarian", "lt": "Lithuanian", "la": "Latin", "mi": "Maori", "ml": "Malayalam", "cy": "Welsh", "sk": "Slovak", "te": "Telugu", "fa": "Persian", "lv": "Latvian", "bn": "Bengali", "sr": "Serbian", "az": "Azerbaijani", "sl": "Slovenian", "kn": "Kannada", "et": "Estonian", "mk": "Macedonian", "br": "Breton", "eu": "Basque", "is": "Icelandic", "hy": "Armenian", "ne": "Nepali", "mn": "Mongolian", "bs": "Bosnian", "kk": "Kazakh", "sq": "Albanian", "sw": "Swahili", "gl": "Galician", "mr": "Marathi", "pa": "Punjabi", "si": "Sinhala", "km": "Khmer", "sn": "Shona", "yo": "Yoruba", "so": "Somali", "af": "Afrikaans", "oc": "Occitan", "ka": "Georgian", "be": "Belarusian", "tg": "Tajik", "sd": "Sindhi", "gu": "Gujarati", "am": "Amharic", "yi": "Yiddish", "lo": "Lao", "uz": "Uzbek", "fo": "Faroese", "ht": "Haitian creole", "ps": "Pashto", "tk": "Turkmen", "nn": "Nynorsk", "mt": "Maltese", "sa": "Sanskrit", "lb": "Luxembourgish", "my": "Myanmar", "bo": "Tibetan", "tl": "Tagalog", "mg": "Malagasy", "as": "Assamese", "tt": "Tatar", "haw": "Hawaiian", "ln": "Lingala", "ha": "Hausa", "ba": "Bashkir", "jw": "Javanese", "su": "Sundanese", } source_language_list = [key[0] for key in source_languages.items()] MODEL_NAME = "vumichien/whisper-medium-jp" lang = "ja" device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) os.makedirs('output', exist_ok=True) pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe") embedding_model = PretrainedSpeakerEmbedding( "speechbrain/spkrec-ecapa-voxceleb", device=torch.device("cuda" if torch.cuda.is_available() else "cpu")) def transcribe(microphone, file_upload): warn_output = "" if (microphone is not None) and (file_upload is not None): warn_output = ( "WARNING: You've uploaded an audio file and used the microphone. " "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" ) elif (microphone is None) and (file_upload is None): return "ERROR: You have to either use the microphone or upload an audio file" file = microphone if microphone is not None else file_upload text = pipe(file)["text"] return warn_output + text def _return_yt_html_embed(yt_url): video_id = yt_url.split("?v=")[-1] HTML_str = ( f'
' "
" ) return HTML_str def yt_transcribe(yt_url): # yt = YouTube(yt_url) # html_embed_str = _return_yt_html_embed(yt_url) # stream = yt.streams.filter(only_audio=True)[0] # stream.download(filename="audio.mp3") ydl_opts = { 'format': 'bestvideo*+bestaudio/best', 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192', }], 'outtmpl':'audio.%(ext)s', } with yt_dlp.YoutubeDL(ydl_opts) as ydl: ydl.download([yt_url]) text = pipe("audio.mp3")["text"] return html_embed_str, text def convert_time(secs): return datetime.timedelta(seconds=round(secs)) def get_youtube(video_url): # yt = YouTube(video_url) # abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download() ydl_opts = { 'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best', } with yt_dlp.YoutubeDL(ydl_opts) as ydl: info = ydl.extract_info(video_url, download=False) abs_video_path = ydl.prepare_filename(info) ydl.process_info(info) print("Success download video") print(abs_video_path) return abs_video_path def speech_to_text(video_file_path, selected_source_lang, whisper_model, num_speakers): """ # Transcribe youtube link using OpenAI Whisper 1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts. 2. Generating speaker embeddings for each segments. 3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment. Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper Speaker diarization model and pipeline from by https://github.com/pyannote/pyannote-audio """ # model = whisper.load_model(whisper_model) # model = WhisperModel(whisper_model, device="cuda", compute_type="int8_float16") model = WhisperModel(whisper_model, compute_type="int8") time_start = time.time() print(video_file_path) try: # Read and convert youtube video _,file_ending = os.path.splitext(f'{video_file_path}') print(f'file enging is {file_ending}') audio_file = video_file_path.replace(file_ending, ".wav") print("starting conversion to wav") os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file}"') # Get duration with contextlib.closing(wave.open(audio_file,'r')) as f: frames = f.getnframes() rate = f.getframerate() duration = frames / float(rate) print(f"conversion to wav ready, duration of audio file: {duration}") # Transcribe audio options = dict(language=selected_source_lang, beam_size=5, best_of=5) transcribe_options = dict(task="transcribe", **options) segments_raw, info = model.transcribe(audio_file, **transcribe_options) # Convert back to original openai format segments = [] i = 0 for segment_chunk in segments_raw: chunk = {} chunk["start"] = segment_chunk.start chunk["end"] = segment_chunk.end chunk["text"] = segment_chunk.text segments.append(chunk) i += 1 print("transcribe audio done with fast whisper") except Exception as e: raise RuntimeError("Error converting video to audio") try: # Create embedding def segment_embedding(segment): audio = Audio() start = segment["start"] # Whisper overshoots the end timestamp in the last segment end = min(duration, segment["end"]) clip = Segment(start, end) waveform, sample_rate = audio.crop(audio_file, clip) return embedding_model(waveform[None]) embeddings = np.zeros(shape=(len(segments), 192)) for i, segment in enumerate(segments): embeddings[i] = segment_embedding(segment) embeddings = np.nan_to_num(embeddings) print(f'Embedding shape: {embeddings.shape}') if num_speakers == 0: # Find the best number of speakers score_num_speakers = {} for num_speakers in range(2, 10+1): clustering = AgglomerativeClustering(num_speakers).fit(embeddings) score = silhouette_score(embeddings, clustering.labels_, metric='euclidean') score_num_speakers[num_speakers] = score best_num_speaker = max(score_num_speakers, key=lambda x:score_num_speakers[x]) print(f"The best number of speakers: {best_num_speaker} with {score_num_speakers[best_num_speaker]} score") else: best_num_speaker = num_speakers # Assign speaker label clustering = AgglomerativeClustering(best_num_speaker).fit(embeddings) labels = clustering.labels_ for i in range(len(segments)): segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1) # Make output objects = { 'Start' : [], 'End': [], 'Speaker': [], 'Text': [] } text = '' for (i, segment) in enumerate(segments): if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]: objects['Start'].append(str(convert_time(segment["start"]))) objects['Speaker'].append(segment["speaker"]) if i != 0: objects['End'].append(str(convert_time(segments[i - 1]["end"]))) objects['Text'].append(text) text = '' text += segment["text"] + ' ' objects['End'].append(str(convert_time(segments[i - 1]["end"]))) objects['Text'].append(text) time_end = time.time() time_diff = time_end - time_start memory = psutil.virtual_memory() gpu_utilization, gpu_memory = GPUInfo.gpu_usage() gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0 gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0 system_info = f""" *Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.* *Processing time: {time_diff:.5} seconds.* *GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}MiB.* """ save_path = "output/transcript_result.csv" df_results = pd.DataFrame(objects) df_results.to_csv(save_path) return df_results, system_info, save_path except Exception as e: raise RuntimeError("Error Running inference with local model", e) # ---- Gradio Layout ----- # Inspiration from https://huggingface.co./spaces/RASMUS/Whisper-youtube-crosslingual-subtitles video_in = gr.Video(label="Video file", mirror_webcam=False) youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True) df_init = pd.DataFrame(columns=['Start', 'End', 'Speaker', 'Text']) memory = psutil.virtual_memory() selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="en", label="Spoken language in video", interactive=True) selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="base", label="Selected Whisper model", interactive=True) number_speakers = gr.Number(precision=0, value=0, label="Input number of speakers for better results. If value=0, model will automatic find the best number of speakers", interactive=True) system_info = gr.Markdown(f"*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB*") download_transcript = gr.File(label="Download transcript") transcription_df = gr.DataFrame(value=df_init,label="Transcription dataframe", row_count=(0, "dynamic"), max_rows = 10, wrap=True, overflow_row_behaviour='paginate') title = "Whisper speaker diarization" demo = gr.Blocks(title=title) demo.encrypt = False with demo: with gr.Tab("Consult AI"): gr.Markdown('''

ConsultAI - Your very own AI Scribe

This model uses Open AI and a modified Whisper model to produce A SOAP note using only your patient conversations! So give it a try!
''') with gr.Row(): gr.Markdown(''' ### Transcribe youtube link using OpenAI Whisper ##### 1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts. ##### 2. Using Open AI to analyse the transcript in terms of your chosen profession. ##### 3. Finally ooutputting your generated SOAP note specilized for your profession and for the patient in just 5 minutes!( Give or take) ''') with gr.Row(): with gr.Column(): upload = gr.inputs.Audio(source="upload", type="filepath", optional=True) with gr.Row(): with gr.Column(): with gr.Column(): gr.Markdown(''' ##### Here you can start the transcription process. ##### Please select the source language for transcription. ##### You can select a range of assumed numbers of speakers. ''') selected_source_lang.render() selected_whisper_model.render() number_speakers.render() transcribe_btn = gr.Button("Transcribe audio and diarization") transcribe_btn.click(speech_to_text, [upload, selected_source_lang, selected_whisper_model, number_speakers], [transcription_df, system_info, download_transcript] ) with gr.Row(): gr.Markdown(''' ##### Here you will get transcription output ##### ''') with gr.Row(): with gr.Column(): download_transcript.render() transcription_df.render() system_info.render() gr.Markdown('''
visitor badgeLicense: Apache 2.0
''') demo.launch(debug=True)