import os import torch import argparse import gradio as gr #from zipfile import ZipFile from melo.api import TTS # Init EN/ZH baseTTS and ToneConvertor from OpenVoice import se_extractor from OpenVoice.api import BaseSpeakerTTS, ToneColorConverter import devicetorch device = devicetorch.get(torch) def predict(prompt, style, audio_file_pth, mic_file_path, use_mic, language): # initialize a empty info text_hint = '' tts_model = TTS(language=language, device=device) speaker_id = models[language].hps.data.spk2id speaker_key = speaker_key.lower().replace('_', '-') source_se = torch.load(f'checkpoints/base_speakers/ses/{speaker_key}.pth', map_location=device) if use_mic == True: if mic_file_path is not None: speaker_wav = mic_file_path else: text_hint += f"[ERROR] Please record your voice with Microphone, or uncheck Use Microphone to use reference audios\n" gr.Warning( "Please record your voice with Microphone, or uncheck Use Microphone to use reference audios" ) return ( text_hint, None, None, ) else: speaker_wav = audio_file_pth if len(prompt) < 2: text_hint += f"[ERROR] Please give a longer prompt text \n" gr.Warning("Please give a longer prompt text") return ( text_hint, None, None, ) # note diffusion_conditioning not used on hifigan (default mode), it will be empty but need to pass it to model.inference try: target_se, wavs_folder = se_extractor.get_se(speaker_wav, tone_color_converter, target_dir='processed', max_length=60., vad=True) # os.system(f'rm -rf {wavs_folder}') except Exception as e: text_hint += f"[ERROR] Get target tone color error {str(e)} \n" gr.Warning( "[ERROR] Get target tone color error {str(e)} \n" ) return ( text_hint, None, None, ) src_path = f'{output_dir}/tmp.wav' speed = 1.0 tts_model.tts(prompt, src_path, speaker=style, language=language) save_path = f'{output_dir}/output.wav' # Run the tone color converter encode_message = "@MyShell" tone_color_converter.convert( audio_src_path=src_path, src_se=source_se, tgt_se=target_se, output_path=save_path, message=encode_message) text_hint += f'''Get response successfully \n''' return ( text_hint, save_path, speaker_wav, ) examples = [ [ "今天天气真好,我们一起出去吃饭吧。", 'default', "examples/speaker0.mp3", None, False, True, ],[ "This audio is generated by open voice with a half-performance model.", 'whispering', "examples/speaker1.mp3", None, False, True, ], [ "He hoped there would be stew for dinner, turnips and carrots and bruised potatoes and fat mutton pieces to be ladled out in thick, peppered, flour-fattened sauce.", 'sad', "examples/speaker2.mp3", None, False, True, ], ] with gr.Blocks(analytics_enabled=False) as demo: # with gr.Row(): # gr.HTML(wrapped_markdown_content) with gr.Row(): with gr.Column(): input_text_gr = gr.Textbox( label="Text Prompt", info="One or two sentences at a time is better. Up to 200 text characters.", value="He hoped there would be stew for dinner, turnips and carrots and bruised potatoes and fat mutton pieces to be ladled out in thick, peppered, flour-fattened sauce.", ) style_gr = gr.Dropdown( label="Style", info="Select a style of output audio for the synthesised speech. (Chinese only support 'default' now)", choices=['default', 'whispering', 'cheerful', 'terrified', 'angry', 'sad', 'friendly'], max_choices=1, value="default", ) ref_gr = gr.Audio( label="Reference Audio", info="Click on the ✎ button to upload your own target speaker audio", type="filepath", value="examples/speaker0.mp3", ) mic_gr = gr.Audio( source="microphone", type="filepath", info="Use your microphone to record audio", label="Use Microphone for Reference", ) use_mic_gr = gr.Checkbox( label="Use Microphone", value=False, info="Notice: Microphone input may not work properly under traffic", ) language = gr.Radio(['EN_NEWEST', 'EN', 'ES', 'FR', 'ZH', 'JP', 'KR'], label='Language', value='EN_NEWEST') tts_button = gr.Button("Send", elem_id="send-btn", visible=True) with gr.Column(): out_text_gr = gr.Text(label="Info") audio_gr = gr.Audio(label="Synthesised Audio", autoplay=True) ref_audio_gr = gr.Audio(label="Reference Audio Used") gr.Examples(examples, label="Examples", inputs=[input_text_gr, style_gr, ref_gr, mic_gr, use_mic_gr, language], outputs=[out_text_gr, audio_gr, ref_audio_gr], fn=predict, cache_examples=False,) tts_button.click(predict, [input_text_gr, style_gr, ref_gr, mic_gr, use_mic_gr, language], outputs=[out_text_gr, audio_gr, ref_audio_gr]) demo.queue() demo.launch(debug=True, show_api=True)