|
|
|
|
|
""" |
|
face detectoin and alignment using InsightFace |
|
""" |
|
|
|
import numpy as np |
|
from .rprint import rlog as log |
|
from .dependencies.insightface.app import FaceAnalysis |
|
from .dependencies.insightface.app.common import Face |
|
from .timer import Timer |
|
|
|
|
|
def sort_by_direction(faces, direction: str = 'large-small', face_center=None): |
|
if len(faces) <= 0: |
|
return faces |
|
|
|
if direction == 'left-right': |
|
return sorted(faces, key=lambda face: face['bbox'][0]) |
|
if direction == 'right-left': |
|
return sorted(faces, key=lambda face: face['bbox'][0], reverse=True) |
|
if direction == 'top-bottom': |
|
return sorted(faces, key=lambda face: face['bbox'][1]) |
|
if direction == 'bottom-top': |
|
return sorted(faces, key=lambda face: face['bbox'][1], reverse=True) |
|
if direction == 'small-large': |
|
return sorted(faces, key=lambda face: (face['bbox'][2] - face['bbox'][0]) * (face['bbox'][3] - face['bbox'][1])) |
|
if direction == 'large-small': |
|
return sorted(faces, key=lambda face: (face['bbox'][2] - face['bbox'][0]) * (face['bbox'][3] - face['bbox'][1]), reverse=True) |
|
if direction == 'distance-from-retarget-face': |
|
return sorted(faces, key=lambda face: (((face['bbox'][2]+face['bbox'][0])/2-face_center[0])**2+((face['bbox'][3]+face['bbox'][1])/2-face_center[1])**2)**0.5) |
|
return faces |
|
|
|
|
|
class FaceAnalysisDIY(FaceAnalysis): |
|
def __init__(self, name='buffalo_l', root='~/.insightface', allowed_modules=None, **kwargs): |
|
super().__init__(name=name, root=root, allowed_modules=allowed_modules, **kwargs) |
|
|
|
self.timer = Timer() |
|
|
|
def get(self, img_bgr, **kwargs): |
|
max_num = kwargs.get('max_num', 0) |
|
flag_do_landmark_2d_106 = kwargs.get('flag_do_landmark_2d_106', True) |
|
direction = kwargs.get('direction', 'large-small') |
|
face_center = None |
|
|
|
bboxes, kpss = self.det_model.detect(img_bgr, max_num=max_num, metric='default') |
|
if bboxes.shape[0] == 0: |
|
return [] |
|
ret = [] |
|
for i in range(bboxes.shape[0]): |
|
bbox = bboxes[i, 0:4] |
|
det_score = bboxes[i, 4] |
|
kps = None |
|
if kpss is not None: |
|
kps = kpss[i] |
|
face = Face(bbox=bbox, kps=kps, det_score=det_score) |
|
for taskname, model in self.models.items(): |
|
if taskname == 'detection': |
|
continue |
|
|
|
if (not flag_do_landmark_2d_106) and taskname == 'landmark_2d_106': |
|
continue |
|
|
|
|
|
model.get(img_bgr, face) |
|
ret.append(face) |
|
|
|
ret = sort_by_direction(ret, direction, face_center) |
|
return ret |
|
|
|
def warmup(self): |
|
self.timer.tic() |
|
|
|
img_bgr = np.zeros((512, 512, 3), dtype=np.uint8) |
|
self.get(img_bgr) |
|
|
|
elapse = self.timer.toc() |
|
log(f'FaceAnalysisDIY warmup time: {elapse:.3f}s') |
|
|