|
|
|
|
|
import gradio as gr |
|
import numpy as np |
|
import os.path as osp |
|
from typing import List, Union, Tuple |
|
from dataclasses import dataclass, field |
|
import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False) |
|
|
|
from .landmark_runner import LandmarkRunner |
|
from .face_analysis_diy import FaceAnalysisDIY |
|
from .helper import prefix |
|
from .crop import crop_image, crop_image_by_bbox, parse_bbox_from_landmark, average_bbox_lst |
|
from .timer import Timer |
|
from .rprint import rlog as log |
|
from .io import load_image_rgb |
|
from .video import VideoWriter, get_fps, change_video_fps |
|
|
|
|
|
def make_abs_path(fn): |
|
return osp.join(osp.dirname(osp.realpath(__file__)), fn) |
|
|
|
|
|
@dataclass |
|
class Trajectory: |
|
start: int = -1 |
|
end: int = -1 |
|
lmk_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) |
|
bbox_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) |
|
frame_rgb_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) |
|
frame_rgb_crop_lst: Union[Tuple, List, np.ndarray] = field(default_factory=list) |
|
|
|
|
|
class Cropper(object): |
|
def __init__(self, **kwargs) -> None: |
|
device_id = kwargs.get('device_id', 0) |
|
self.landmark_runner = LandmarkRunner( |
|
ckpt_path=make_abs_path('../../pretrained_weights/liveportrait/landmark.onnx'), |
|
onnx_provider='cuda', |
|
device_id=device_id |
|
) |
|
self.landmark_runner.warmup() |
|
|
|
self.face_analysis_wrapper = FaceAnalysisDIY( |
|
name='buffalo_l', |
|
root=make_abs_path('../../pretrained_weights/insightface'), |
|
providers=["CUDAExecutionProvider"] |
|
) |
|
self.face_analysis_wrapper.prepare(ctx_id=device_id, det_size=(512, 512)) |
|
self.face_analysis_wrapper.warmup() |
|
|
|
self.crop_cfg = kwargs.get('crop_cfg', None) |
|
|
|
def update_config(self, user_args): |
|
for k, v in user_args.items(): |
|
if hasattr(self.crop_cfg, k): |
|
setattr(self.crop_cfg, k, v) |
|
|
|
def crop_single_image(self, obj, **kwargs): |
|
direction = kwargs.get('direction', 'large-small') |
|
|
|
|
|
if isinstance(obj, str): |
|
img_rgb = load_image_rgb(obj) |
|
elif isinstance(obj, np.ndarray): |
|
img_rgb = obj |
|
|
|
src_face = self.face_analysis_wrapper.get( |
|
img_rgb, |
|
flag_do_landmark_2d_106=True, |
|
direction=direction |
|
) |
|
|
|
if len(src_face) == 0: |
|
log('No face detected in the source image.') |
|
raise gr.Error("No face detected in the source image 💥!", duration=5) |
|
raise Exception("No face detected in the source image!") |
|
elif len(src_face) > 1: |
|
log(f'More than one face detected in the image, only pick one face by rule {direction}.') |
|
|
|
src_face = src_face[0] |
|
pts = src_face.landmark_2d_106 |
|
|
|
|
|
ret_dct = crop_image( |
|
img_rgb, |
|
pts, |
|
dsize=kwargs.get('dsize', 512), |
|
scale=kwargs.get('scale', 2.3), |
|
vy_ratio=kwargs.get('vy_ratio', -0.15), |
|
) |
|
|
|
ret_dct['img_crop_256x256'] = cv2.resize(ret_dct['img_crop'], (256, 256), interpolation=cv2.INTER_AREA) |
|
ret_dct['pt_crop_256x256'] = ret_dct['pt_crop'] * 256 / kwargs.get('dsize', 512) |
|
|
|
recon_ret = self.landmark_runner.run(img_rgb, pts) |
|
lmk = recon_ret['pts'] |
|
ret_dct['lmk_crop'] = lmk |
|
|
|
return ret_dct |
|
|
|
def get_retargeting_lmk_info(self, driving_rgb_lst): |
|
|
|
driving_lmk_lst = [] |
|
for driving_image in driving_rgb_lst: |
|
ret_dct = self.crop_single_image(driving_image) |
|
driving_lmk_lst.append(ret_dct['lmk_crop']) |
|
return driving_lmk_lst |
|
|
|
def make_video_clip(self, driving_rgb_lst, output_path, output_fps=30, **kwargs): |
|
trajectory = Trajectory() |
|
direction = kwargs.get('direction', 'large-small') |
|
for idx, driving_image in enumerate(driving_rgb_lst): |
|
if idx == 0 or trajectory.start == -1: |
|
src_face = self.face_analysis_wrapper.get( |
|
driving_image, |
|
flag_do_landmark_2d_106=True, |
|
direction=direction |
|
) |
|
if len(src_face) == 0: |
|
|
|
continue |
|
elif len(src_face) > 1: |
|
log(f'More than one face detected in the driving frame_{idx}, only pick one face by rule {direction}.') |
|
src_face = src_face[0] |
|
pts = src_face.landmark_2d_106 |
|
lmk_203 = self.landmark_runner(driving_image, pts)['pts'] |
|
trajectory.start, trajectory.end = idx, idx |
|
else: |
|
lmk_203 = self.face_recon_wrapper(driving_image, trajectory.lmk_lst[-1])['pts'] |
|
trajectory.end = idx |
|
|
|
trajectory.lmk_lst.append(lmk_203) |
|
ret_bbox = parse_bbox_from_landmark(lmk_203, scale=self.crop_cfg.globalscale, vy_ratio=elf.crop_cfg.vy_ratio)['bbox'] |
|
bbox = [ret_bbox[0, 0], ret_bbox[0, 1], ret_bbox[2, 0], ret_bbox[2, 1]] |
|
trajectory.bbox_lst.append(bbox) |
|
trajectory.frame_rgb_lst.append(driving_image) |
|
|
|
global_bbox = average_bbox_lst(trajectory.bbox_lst) |
|
for idx, (frame_rgb, lmk) in enumerate(zip(trajectory.frame_rgb_lst, trajectory.lmk_lst)): |
|
ret_dct = crop_image_by_bbox( |
|
frame_rgb, global_bbox, lmk=lmk, |
|
dsize=self.video_crop_cfg.dsize, flag_rot=self.video_crop_cfg.flag_rot, borderValue=self.video_crop_cfg.borderValue |
|
) |
|
frame_rgb_crop = ret_dct['img_crop'] |
|
|