PedroMartelleto's picture
Added examples
ad937a3
raw
history blame
1.46 kB
import gradio as gr
from torchvision.models import resnet50, ResNet50_Weights
from torchvision import transforms
import torch.nn as nn
import torch
@staticmethod
def create_model_from_checkpoint():
# Loads a model from a checkpoint
model = resnet50()
model.fc = nn.Linear(model.fc.in_features, 3)
model.load_state_dict(torch.load("best_model"))
model.eval()
return model
def prep_image(img):
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor()
])
transform_normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
transformed_img = transform(img)
input = transform_normalize(transformed_img)
input = input.unsqueeze(0)
return input
model = create_model_from_checkpoint()
labels = [ "benign", "malignant", "normal" ]
def predict(img):
input = prep_image(img)
with torch.no_grad():
prediction = torch.nn.functional.softmax(model(input)[0], dim=0)
confidences = {labels[i]: float(prediction[i]) for i in range(3)}
return confidences
ui = gr.Interface(fn=predict,
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=3),
examples=["benign (52).png", "benign (243).png", "malignant (127).png", "malignant (201).png", "normal (81).png", "normal (101).png"]).launch()
ui.launch(share=True)