Spaces:
Runtime error
Runtime error
upload files
Browse files- README copy.md +12 -0
- adapter_config.json +34 -0
- adapter_model.safetensors +3 -0
- app.py +40 -0
README copy.md
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Final Instagram Caption Model
|
3 |
+
emoji: 🌍
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: gray
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.44.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": {
|
4 |
+
"base_model_class": "GitForCausalLM",
|
5 |
+
"parent_library": "transformers.models.git.modeling_git"
|
6 |
+
},
|
7 |
+
"base_model_name_or_path": "microsoft/git-base",
|
8 |
+
"bias": "none",
|
9 |
+
"fan_in_fan_out": false,
|
10 |
+
"inference_mode": true,
|
11 |
+
"init_lora_weights": true,
|
12 |
+
"layer_replication": null,
|
13 |
+
"layers_pattern": null,
|
14 |
+
"layers_to_transform": null,
|
15 |
+
"loftq_config": {},
|
16 |
+
"lora_alpha": 8,
|
17 |
+
"lora_dropout": 0.0,
|
18 |
+
"megatron_config": null,
|
19 |
+
"megatron_core": "megatron.core",
|
20 |
+
"modules_to_save": [
|
21 |
+
"classifier"
|
22 |
+
],
|
23 |
+
"peft_type": "LORA",
|
24 |
+
"r": 8,
|
25 |
+
"rank_pattern": {},
|
26 |
+
"revision": null,
|
27 |
+
"target_modules": [
|
28 |
+
"value",
|
29 |
+
"query"
|
30 |
+
],
|
31 |
+
"task_type": null,
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43229defd2d74cf95ce3eeb187b493d6a409cf75b93ed92f9eb077e9347a6c25
|
3 |
+
size 593144
|
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from transformers import pipeline, AutoProcessor, AutoModelForCausalLM
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
|
6 |
+
processor = AutoProcessor.from_pretrained("microsoft/git-base")
|
7 |
+
model = AutoModelForCausalLM.from_pretrained('./')
|
8 |
+
|
9 |
+
def predict(image):
|
10 |
+
# Prepare the image using the processor
|
11 |
+
inputs = processor(images=image, return_tensors="pt")
|
12 |
+
|
13 |
+
# Move inputs to the appropriate device
|
14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
inputs = {key: value.to(device) for key, value in inputs.items()}
|
16 |
+
model.to(device)
|
17 |
+
|
18 |
+
# Generate the caption
|
19 |
+
outputs = model.generate(**inputs)
|
20 |
+
|
21 |
+
# Decode the generated caption
|
22 |
+
caption = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
23 |
+
|
24 |
+
return caption
|
25 |
+
|
26 |
+
|
27 |
+
with gr.Blocks() as demo:
|
28 |
+
image = gr.Image(type="pil")
|
29 |
+
predict_btn = gr.Button("Predict", variant="primary")
|
30 |
+
output = gr.Label(label="Generated Caption")
|
31 |
+
|
32 |
+
inputs = [image]
|
33 |
+
outputs = [output]
|
34 |
+
|
35 |
+
predict_btn.click(predict, inputs=inputs, outputs=outputs)
|
36 |
+
|
37 |
+
if __name__ == "__main":
|
38 |
+
demo.launch() # Local machine only
|
39 |
+
# demo.launch(server_name="0.0.0.0") # LAN access to local machine
|
40 |
+
# demo.launch(share=True) # Public access to local machine
|