from huggingface_hub import hf_hub_download config_path=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-sen1floods11", filename="sen1floods11_Prithvi_100M.py", token=os.environ.get("token")) ckpt=hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-100M-sen1floods11", filename='sen1floods11_Prithvi_100M.pth', token=os.environ.get("token")) import numpy as np import gradio as gr from PIL import Image import rasterio def cargar_imagen_tif(tifile): try: with rasterio.open(tifile, "r") as src: data = src.read() tuki = Image.fromarray(data[0]) # Convierte el arreglo raster a una imagen PIL return convertir_a_blanco_y_negro(tuki) # Captura el valor de retorno de la función except Exception as e: return f"Error al cargar la imagen TIFF: {str(e)}" def convertir_a_blanco_y_negro(input_img): try: img_array = np.array(input_img) binary_img = np.zeros_like(img_array) color_threshold = 50 for i in range(img_array.shape[0]): for j in range(img_array.shape[1]): pixel_color = img_array[i, j] if np.all(pixel_color <= color_threshold): binary_img[i, j] = 0 else: binary_img[i, j] = 255 binary_img = Image.fromarray(np.uint8(binary_img)) return binary_img, "Hecho" except Exception as e: return f"Error al convertir a blanco y negro: {str(e)}" demo = gr.Interface( fn=cargar_imagen_tif, inputs="file", outputs=["image", "text"], title="Conversión a Blanco y Negro", description="Carga una imagen TIFF y conviértela a blanco y negro." ) demo.launch()