from flask import Flask, jsonify, request import requests from bs4 import BeautifulSoup import os import re import urllib.parse import time import random import base64 from io import BytesIO from googlesearch import search import json app = Flask(__name__) def search_images(query, num_images=5): # Headers to mimic a browser request headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Language': 'en-US,en;q=0.5', 'Accept-Encoding': 'gzip, deflate', 'DNT': '1', 'Connection': 'keep-alive', } # Format the query for URL formatted_query = urllib.parse.quote(query + " high quality") # Google Images URL url = f"https://www.google.com/search?q={formatted_query}&tbm=isch&safe=active" try: # Get the HTML content response = requests.get(url, headers=headers, timeout=30) response.raise_for_status() # Find all image URLs using regex image_urls = re.findall(r'https?://[^"\']*?(?:jpg|jpeg|png|gif)', response.text) # Remove duplicates while preserving order image_urls = list(dict.fromkeys(image_urls)) # Filter and clean results results = [] for img_url in image_urls: if len(results) >= num_images: break # Skip small thumbnails, icons, and low-quality images if ('gstatic.com' in img_url or 'google.com' in img_url or 'icon' in img_url.lower() or 'thumb' in img_url.lower() or 'small' in img_url.lower()): continue try: # Verify the image URL is valid img_response = requests.head(img_url, headers=headers, timeout=5) if img_response.status_code == 200: content_type = img_response.headers.get('Content-Type', '') if content_type.startswith('image/'): results.append({ 'url': img_url, 'content_type': content_type }) except Exception as e: print(f"Error checking image URL: {str(e)}") continue # Add a small delay between checks time.sleep(random.uniform(0.2, 0.5)) return results except Exception as e: print(f"An error occurred: {str(e)}") return [] def get_cover_image(query): """Get a high-quality cover image URL for a given query""" try: # Search for images images = search_images(query, num_images=3) # Get top 3 images to choose from if not images: return None # Return the first valid image URL return images[0]['url'] except Exception as e: print(f"Error getting cover image: {str(e)}") return None @app.route('/search_images', methods=['GET']) def api_search_images(): try: # Get query parameters query = request.args.get('query', '') num_images = int(request.args.get('num_images', 5)) if not query: return jsonify({'error': 'Query parameter is required'}), 400 if num_images < 1 or num_images > 20: return jsonify({'error': 'Number of images must be between 1 and 20'}), 400 # Search for images results = search_images(query, num_images) return jsonify({ 'success': True, 'query': query, 'results': results }) except Exception as e: return jsonify({ 'success': False, 'error': str(e) }), 500 def scrape_site_content(query, num_sites=5): headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Language': 'en-US,en;q=0.5', 'Accept-Encoding': 'gzip, deflate', 'DNT': '1', 'Connection': 'keep-alive', } results = [] scraped = 0 retries = 2 # Number of retries per URL timeout = 5 # Reduced timeout to 5 seconds try: # Get more URLs than needed to account for failures search_results = list(search(query, num_results=num_sites * 2)) # Process each found URL for url in search_results: if scraped >= num_sites: break success = False for attempt in range(retries): try: # Get the HTML content print(f"Trying {url} (attempt {attempt + 1}/{retries})") response = requests.get( url, headers=headers, timeout=timeout, verify=False # Skip SSL verification ) response.raise_for_status() # Verify it's HTML content content_type = response.headers.get('Content-Type', '').lower() if 'text/html' not in content_type: print(f"Skipping {url} - not HTML content") break # Parse the HTML content soup = BeautifulSoup(response.text, 'html.parser') # Remove script and style elements for script in soup(["script", "style"]): script.decompose() # Extract text content (limit to first 10000 characters) text_content = soup.get_text(separator='\n', strip=True)[:10000] # Skip if not enough content if len(text_content.split()) < 100: # Skip if less than 100 words print(f"Skipping {url} - not enough content") break # Extract all links (limit to first 10) links = [] for link in soup.find_all('a', href=True)[:10]: href = link['href'] if href.startswith('http'): links.append({ 'text': link.get_text(strip=True), 'url': href }) # Extract meta information title = soup.title.string if soup.title else '' meta_description = '' meta_keywords = '' meta_desc_tag = soup.find('meta', attrs={'name': 'description'}) if meta_desc_tag: meta_description = meta_desc_tag.get('content', '') meta_keywords_tag = soup.find('meta', attrs={'name': 'keywords'}) if meta_keywords_tag: meta_keywords = meta_keywords_tag.get('content', '') results.append({ 'url': url, 'title': title, 'meta_description': meta_description, 'meta_keywords': meta_keywords, 'text_content': text_content, 'links': links }) scraped += 1 success = True # Add a random delay between scrapes time.sleep(random.uniform(0.5, 1)) break # Break retry loop on success except requests.Timeout: print(f"Timeout on {url} (attempt {attempt + 1}/{retries})") if attempt == retries - 1: # Last attempt print(f"Skipping {url} after {retries} timeout attempts") except requests.RequestException as e: print(f"Error scraping {url} (attempt {attempt + 1}/{retries}): {str(e)}") if attempt == retries - 1: # Last attempt print(f"Skipping {url} after {retries} failed attempts") # Add a longer delay between retries if not success and attempt < retries - 1: time.sleep(random.uniform(1, 2)) # If we haven't found enough valid content and have more URLs, continue if scraped < num_sites and len(results) < len(search_results): continue return results except Exception as e: print(f"Error in search/scraping process: {str(e)}") # Return whatever results we've managed to gather return results @app.route('/scrape_sites', methods=['GET']) def api_scrape_sites(): try: # Get query parameters query = request.args.get('query', '') num_sites = int(request.args.get('num_sites', 10)) if not query: return jsonify({'error': 'Query parameter is required'}), 400 if num_sites < 1 or num_sites > 20: return jsonify({'error': 'Number of sites must be between 1 and 20'}), 400 # Scrape the websites results = scrape_site_content(query, num_sites) return jsonify({ 'success': True, 'query': query, 'results': results }) except Exception as e: return jsonify({ 'success': False, 'error': str(e) }), 500 def analyze_with_gpt(scraped_content, research_query): """Analyze scraped content using OpenRouter's Gemini model""" try: headers = { 'Authorization': f'Bearer {os.getenv("OPENROUTER_API_KEY")}', 'HTTP-Referer': 'http://localhost:5001', 'X-Title': 'Research Assistant' } # Prepare the prompt prompt = f"""You are a research assistant analyzing web content to provide comprehensive research. Research Query: {research_query} Below is content scraped from various web sources. Analyze this content and provide a detailed, well-structured research response. Make sure to cite sources when making specific claims. Scraped Content: {json.dumps(scraped_content, indent=2)} Please provide: 1. A comprehensive analysis of the topic 2. Key findings and insights 3. Supporting evidence from the sources 4. Any additional considerations or caveats Format your response in markdown with proper headings and citations.""" response = requests.post( 'https://openrouter.ai/api/v1/chat/completions', headers=headers, json={ 'model': 'google/gemini-2.0-flash-thinking-exp:free', 'messages': [{ 'role': 'user', 'content': prompt }] }, timeout=60 ) if response.status_code != 200: raise Exception(f"OpenRouter API error: {response.text}") return response.json()['choices'][0]['message']['content'] except Exception as e: print(f"Error in analyze_with_gpt: {str(e)}") return f"Error analyzing content: {str(e)}" def research_topic(query, num_sites=5): """Research a topic using web scraping and GPT analysis""" try: # First get web content using existing scrape_site_content function scraped_results = scrape_site_content(query, num_sites) # Format scraped content for analysis formatted_content = [] for result in scraped_results: formatted_content.append({ 'source': result['url'], 'title': result['title'], 'content': result['text_content'][:2000], # Limit content length for GPT 'meta_info': { 'description': result['meta_description'], 'keywords': result['meta_keywords'] } }) # Get AI analysis of the scraped content analysis = analyze_with_gpt(formatted_content, query) return { 'success': True, 'query': query, 'analysis': analysis, 'sources': formatted_content } except Exception as e: return { 'success': False, 'error': str(e) } @app.route('/research', methods=['GET']) def api_research(): try: query = request.args.get('query', '') # Always use 5 sites for consistency num_sites = 5 if not query: return jsonify({'error': 'Query parameter is required'}), 400 results = research_topic(query, num_sites) return jsonify(results) except Exception as e: return jsonify({ 'success': False, 'error': str(e) }), 500 if __name__ == '__main__': app.run(host='0.0.0.0', port=5000)