from fastapi import FastAPI, UploadFile, File from fastapi.responses import HTMLResponse from fastapi.staticfiles import StaticFiles import os from dotenv import load_dotenv from PyPDF2 import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_google_genai import GoogleGenerativeAIEmbeddings from langchain_community.vectorstores import FAISS from langchain_google_genai import ChatGoogleGenerativeAI from langchain.chains.question_answering import load_qa_chain from langchain.prompts import PromptTemplate import logging app = FastAPI() # Set up logging logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s: %(message)s') load_dotenv() genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) def get_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: try: pdf_reader = PdfReader(pdf.file) for page in pdf_reader.pages: text += page.extract_text() except Exception as e: logging.error(f"Error processing PDF file: {e}") return text def get_text_chunks(text): text_splitter = RecursiveCharacterTextSplitter( chunk_size=10000, chunk_overlap=1000 ) chunks = text_splitter.split_text(text) return chunks def get_vector_store(text_chunks): logging.info("Starting vector store creation") embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") vector_store = FAISS.from_texts(texts=text_chunks, embedding=embeddings) logging.info("FAISS vector store created") faiss_index_dir = os.path.join(os.path.dirname(__file__), "faiss_index") os.makedirs(faiss_index_dir, exist_ok=True) vector_store.save_local(faiss_index_dir) logging.info("FAISS vector store saved successfully.") def get_conversation_chain(): prompt_template = """ Answer the question clear and precise. If not provided the context return the result as "Sorry I dont know the answer", don't provide the wrong answer. Context:\n {context}?\n Question:\n{question}\n Answer: """ model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) prompt = PromptTemplate(template=prompt_template, input_variables=['context', 'question']) chain = load_qa_chain(model, chain_type='stuff', prompt=prompt) return chain def user_input(user_question): logging.info("Processing user input") faiss_index_dir = os.path.join(os.path.dirname(__file__), "faiss_index") if not os.path.exists(faiss_index_dir): return "Please upload and process PDF files before asking questions." try: new_db = FAISS.load_local(faiss_index_dir, GoogleGenerativeAIEmbeddings(model='models/embedding-001'), allow_dangerous_deserialization=True) logging.info("FAISS vector store loaded successfully") docs = new_db.similarity_search(user_question) chain = get_conversation_chain() response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True) return response["output_text"] except Exception as e: logging.error(f"Error processing user input: {e}") return f"Sorry, there was an error processing your request: {str(e)}. Please try again later." @app.post("/upload_pdf/") async def upload_pdf(pdf_docs: list[UploadFile] = File(...)): raw_text = get_pdf_text(pdf_docs) text_chunks = get_text_chunks(raw_text) get_vector_store(text_chunks) return {"message": "PDFs processed successfully. You can now ask questions."} @app.get("/ask_question/") async def ask_question(user_question: str): response = user_input(user_question) return {"response": response} @app.get("/", response_class=HTMLResponse) async def read_root(): return """
Use POST /upload_pdf/ to upload PDF files.
Use GET /ask_question/ to ask questions from the PDFs you uploaded.
"""