Spaces:
Sleeping
Sleeping
File size: 37,829 Bytes
4a1df2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
# TextAttack Model Zoo
## More details at [https://textattack.readthedocs.io/en/latest/3recipes/models.html](https://textattack.readthedocs.io/en/latest/3recipes/models.html)
TextAttack includes pre-trained models for different common NLP tasks. This makes it easier for
users to get started with TextAttack. It also enables a more fair comparison of attacks from
the literature.
All evaluation results were obtained using `textattack eval` to evaluate models on their default
test dataset (test set, if labels are available, otherwise, eval/validation set). You can use
this command to verify the accuracies for yourself: for example, `textattack eval --model roberta-base-mr`.
The LSTM and wordCNN models' code is available in `textattack.models.helpers`. All other models are transformers
imported from the [`transformers`](https://github.com/huggingface/transformers/) package. To list evaluate all
TextAttack pretrained models, invoke `textattack eval` without specifying a model: `textattack eval --num-examples 1000`.
All evaluations shown are on the full validation or test set up to 1000 examples.
### `LSTM`
<section>
- AG News (`lstm-ag-news`)
- `datasets` dataset `ag_news`, split `test`
- Correct/Whole: 914/1000
- Accuracy: 91.4%
- IMDB (`lstm-imdb`)
- `datasets` dataset `imdb`, split `test`
- Correct/Whole: 883/1000
- Accuracy: 88.30%
- Movie Reviews [Rotten Tomatoes] (`lstm-mr`)
- `datasets` dataset `rotten_tomatoes`, split `validation`
- Correct/Whole: 807/1000
- Accuracy: 80.70%
- `datasets` dataset `rotten_tomatoes`, split `test`
- Correct/Whole: 781/1000
- Accuracy: 78.10%
- SST-2 (`lstm-sst2`)
- `datasets` dataset `glue`, subset `sst2`, split `validation`
- Correct/Whole: 737/872
- Accuracy: 84.52%
- Yelp Polarity (`lstm-yelp`)
- `datasets` dataset `yelp_polarity`, split `test`
- Correct/Whole: 922/1000
- Accuracy: 92.20%
</section>
### `wordCNN`
<section>
- AG News (`cnn-ag-news`)
- `datasets` dataset `ag_news`, split `test`
- Correct/Whole: 910/1000
- Accuracy: 91.00%
- IMDB (`cnn-imdb`)
- `datasets` dataset `imdb`, split `test`
- Correct/Whole: 863/1000
- Accuracy: 86.30%
- Movie Reviews [Rotten Tomatoes] (`cnn-mr`)
- `datasets` dataset `rotten_tomatoes`, split `validation`
- Correct/Whole: 794/1000
- Accuracy: 79.40%
- `datasets` dataset `rotten_tomatoes`, split `test`
- Correct/Whole: 768/1000
- Accuracy: 76.80%
- SST-2 (`cnn-sst2`)
- `datasets` dataset `glue`, subset `sst2`, split `validation`
- Correct/Whole: 721/872
- Accuracy: 82.68%
- Yelp Polarity (`cnn-yelp`)
- `datasets` dataset `yelp_polarity`, split `test`
- Correct/Whole: 913/1000
- Accuracy: 91.30%
</section>
### `albert-base-v2`
<section>
- AG News (`albert-base-v2-ag-news`)
- `datasets` dataset `ag_news`, split `test`
- Correct/Whole: 943/1000
- Accuracy: 94.30%
- CoLA (`albert-base-v2-cola`)
- `datasets` dataset `glue`, subset `cola`, split `validation`
- Correct/Whole: 829/1000
- Accuracy: 82.90%
- IMDB (`albert-base-v2-imdb`)
- `datasets` dataset `imdb`, split `test`
- Correct/Whole: 913/1000
- Accuracy: 91.30%
- Movie Reviews [Rotten Tomatoes] (`albert-base-v2-mr`)
- `datasets` dataset `rotten_tomatoes`, split `validation`
- Correct/Whole: 882/1000
- Accuracy: 88.20%
- `datasets` dataset `rotten_tomatoes`, split `test`
- Correct/Whole: 851/1000
- Accuracy: 85.10%
- Quora Question Pairs (`albert-base-v2-qqp`)
- `datasets` dataset `glue`, subset `qqp`, split `validation`
- Correct/Whole: 914/1000
- Accuracy: 91.40%
- Recognizing Textual Entailment (`albert-base-v2-rte`)
- `datasets` dataset `glue`, subset `rte`, split `validation`
- Correct/Whole: 211/277
- Accuracy: 76.17%
- SNLI (`albert-base-v2-snli`)
- `datasets` dataset `snli`, split `test`
- Correct/Whole: 883/1000
- Accuracy: 88.30%
- SST-2 (`albert-base-v2-sst2`)
- `datasets` dataset `glue`, subset `sst2`, split `validation`
- Correct/Whole: 807/872
- Accuracy: 92.55%)
- STS-b (`albert-base-v2-stsb`)
- `datasets` dataset `glue`, subset `stsb`, split `validation`
- Pearson correlation: 0.9041359738552746
- Spearman correlation: 0.8995912861209745
- WNLI (`albert-base-v2-wnli`)
- `datasets` dataset `glue`, subset `wnli`, split `validation`
- Correct/Whole: 42/71
- Accuracy: 59.15%
- Yelp Polarity (`albert-base-v2-yelp`)
- `datasets` dataset `yelp_polarity`, split `test`
- Correct/Whole: 963/1000
- Accuracy: 96.30%
</section>
### `bert-base-uncased`
<section>
- AG News (`bert-base-uncased-ag-news`)
- `datasets` dataset `ag_news`, split `test`
- Correct/Whole: 942/1000
- Accuracy: 94.20%
- CoLA (`bert-base-uncased-cola`)
- `datasets` dataset `glue`, subset `cola`, split `validation`
- Correct/Whole: 812/1000
- Accuracy: 81.20%
- IMDB (`bert-base-uncased-imdb`)
- `datasets` dataset `imdb`, split `test`
- Correct/Whole: 919/1000
- Accuracy: 91.90%
- MNLI matched (`bert-base-uncased-mnli`)
- `datasets` dataset `glue`, subset `mnli`, split `validation_matched`
- Correct/Whole: 840/1000
- Accuracy: 84.00%
- Movie Reviews [Rotten Tomatoes] (`bert-base-uncased-mr`)
- `datasets` dataset `rotten_tomatoes`, split `validation`
- Correct/Whole: 876/1000
- Accuracy: 87.60%
- `datasets` dataset `rotten_tomatoes`, split `test`
- Correct/Whole: 838/1000
- Accuracy: 83.80%
- MRPC (`bert-base-uncased-mrpc`)
- `datasets` dataset `glue`, subset `mrpc`, split `validation`
- Correct/Whole: 358/408
- Accuracy: 87.75%
- QNLI (`bert-base-uncased-qnli`)
- `datasets` dataset `glue`, subset `qnli`, split `validation`
- Correct/Whole: 904/1000
- Accuracy: 90.40%
- Quora Question Pairs (`bert-base-uncased-qqp`)
- `datasets` dataset `glue`, subset `qqp`, split `validation`
- Correct/Whole: 924/1000
- Accuracy: 92.40%
- Recognizing Textual Entailment (`bert-base-uncased-rte`)
- `datasets` dataset `glue`, subset `rte`, split `validation`
- Correct/Whole: 201/277
- Accuracy: 72.56%
- SNLI (`bert-base-uncased-snli`)
- `datasets` dataset `snli`, split `test`
- Correct/Whole: 894/1000
- Accuracy: 89.40%
- SST-2 (`bert-base-uncased-sst2`)
- `datasets` dataset `glue`, subset `sst2`, split `validation`
- Correct/Whole: 806/872
- Accuracy: 92.43%)
- STS-b (`bert-base-uncased-stsb`)
- `datasets` dataset `glue`, subset `stsb`, split `validation`
- Pearson correlation: 0.8775458937815515
- Spearman correlation: 0.8773251339980935
- WNLI (`bert-base-uncased-wnli`)
- `datasets` dataset `glue`, subset `wnli`, split `validation`
- Correct/Whole: 40/71
- Accuracy: 56.34%
- Yelp Polarity (`bert-base-uncased-yelp`)
- `datasets` dataset `yelp_polarity`, split `test`
- Correct/Whole: 963/1000
- Accuracy: 96.30%
</section>
### `distilbert-base-cased`
<section>
- CoLA (`distilbert-base-cased-cola`)
- `datasets` dataset `glue`, subset `cola`, split `validation`
- Correct/Whole: 786/1000
- Accuracy: 78.60%
- MRPC (`distilbert-base-cased-mrpc`)
- `datasets` dataset `glue`, subset `mrpc`, split `validation`
- Correct/Whole: 320/408
- Accuracy: 78.43%
- Quora Question Pairs (`distilbert-base-cased-qqp`)
- `datasets` dataset `glue`, subset `qqp`, split `validation`
- Correct/Whole: 908/1000
- Accuracy: 90.80%
- SNLI (`distilbert-base-cased-snli`)
- `datasets` dataset `snli`, split `test`
- Correct/Whole: 861/1000
- Accuracy: 86.10%
- SST-2 (`distilbert-base-cased-sst2`)
- `datasets` dataset `glue`, subset `sst2`, split `validation`
- Correct/Whole: 785/872
- Accuracy: 90.02%)
- STS-b (`distilbert-base-cased-stsb`)
- `datasets` dataset `glue`, subset `stsb`, split `validation`
- Pearson correlation: 0.8421540899520146
- Spearman correlation: 0.8407155030382939
</section>
### `distilbert-base-uncased`
<section>
- AG News (`distilbert-base-uncased-ag-news`)
- `datasets` dataset `ag_news`, split `test`
- Correct/Whole: 944/1000
- Accuracy: 94.40%
- CoLA (`distilbert-base-uncased-cola`)
- `datasets` dataset `glue`, subset `cola`, split `validation`
- Correct/Whole: 786/1000
- Accuracy: 78.60%
- IMDB (`distilbert-base-uncased-imdb`)
- `datasets` dataset `imdb`, split `test`
- Correct/Whole: 903/1000
- Accuracy: 90.30%
- MNLI matched (`distilbert-base-uncased-mnli`)
- `datasets` dataset `glue`, subset `mnli`, split `validation_matched`
- Correct/Whole: 817/1000
- Accuracy: 81.70%
- MRPC (`distilbert-base-uncased-mrpc`)
- `datasets` dataset `glue`, subset `mrpc`, split `validation`
- Correct/Whole: 350/408
- Accuracy: 85.78%
- QNLI (`distilbert-base-uncased-qnli`)
- `datasets` dataset `glue`, subset `qnli`, split `validation`
- Correct/Whole: 860/1000
- Accuracy: 86.00%
- Recognizing Textual Entailment (`distilbert-base-uncased-rte`)
- `datasets` dataset `glue`, subset `rte`, split `validation`
- Correct/Whole: 180/277
- Accuracy: 64.98%
- STS-b (`distilbert-base-uncased-stsb`)
- `datasets` dataset `glue`, subset `stsb`, split `validation`
- Pearson correlation: 0.8421540899520146
- Spearman correlation: 0.8407155030382939
- WNLI (`distilbert-base-uncased-wnli`)
- `datasets` dataset `glue`, subset `wnli`, split `validation`
- Correct/Whole: 40/71
- Accuracy: 56.34%
</section>
### `roberta-base`
<section>
- AG News (`roberta-base-ag-news`)
- `datasets` dataset `ag_news`, split `test`
- Correct/Whole: 947/1000
- Accuracy: 94.70%
- CoLA (`roberta-base-cola`)
- `datasets` dataset `glue`, subset `cola`, split `validation`
- Correct/Whole: 857/1000
- Accuracy: 85.70%
- IMDB (`roberta-base-imdb`)
- `datasets` dataset `imdb`, split `test`
- Correct/Whole: 941/1000
- Accuracy: 94.10%
- Movie Reviews [Rotten Tomatoes] (`roberta-base-mr`)
- `datasets` dataset `rotten_tomatoes`, split `validation`
- Correct/Whole: 899/1000
- Accuracy: 89.90%
- `datasets` dataset `rotten_tomatoes`, split `test`
- Correct/Whole: 883/1000
- Accuracy: 88.30%
- MRPC (`roberta-base-mrpc`)
- `datasets` dataset `glue`, subset `mrpc`, split `validation`
- Correct/Whole: 371/408
- Accuracy: 91.18%
- QNLI (`roberta-base-qnli`)
- `datasets` dataset `glue`, subset `qnli`, split `validation`
- Correct/Whole: 917/1000
- Accuracy: 91.70%
- Recognizing Textual Entailment (`roberta-base-rte`)
- `datasets` dataset `glue`, subset `rte`, split `validation`
- Correct/Whole: 217/277
- Accuracy: 78.34%
- SST-2 (`roberta-base-sst2`)
- `datasets` dataset `glue`, subset `sst2`, split `validation`
- Correct/Whole: 820/872
- Accuracy: 94.04%)
- STS-b (`roberta-base-stsb`)
- `datasets` dataset `glue`, subset `stsb`, split `validation`
- Pearson correlation: 0.906067852162708
- Spearman correlation: 0.9025045272903051
- WNLI (`roberta-base-wnli`)
- `datasets` dataset `glue`, subset `wnli`, split `validation`
- Correct/Whole: 40/71
- Accuracy: 56.34%
</section>
### `xlnet-base-cased`
<section>
- CoLA (`xlnet-base-cased-cola`)
- `datasets` dataset `glue`, subset `cola`, split `validation`
- Correct/Whole: 800/1000
- Accuracy: 80.00%
- IMDB (`xlnet-base-cased-imdb`)
- `datasets` dataset `imdb`, split `test`
- Correct/Whole: 957/1000
- Accuracy: 95.70%
- Movie Reviews [Rotten Tomatoes] (`xlnet-base-cased-mr`)
- `datasets` dataset `rotten_tomatoes`, split `validation`
- Correct/Whole: 908/1000
- Accuracy: 90.80%
- `datasets` dataset `rotten_tomatoes`, split `test`
- Correct/Whole: 876/1000
- Accuracy: 87.60%
- MRPC (`xlnet-base-cased-mrpc`)
- `datasets` dataset `glue`, subset `mrpc`, split `validation`
- Correct/Whole: 363/408
- Accuracy: 88.97%
- Recognizing Textual Entailment (`xlnet-base-cased-rte`)
- `datasets` dataset `glue`, subset `rte`, split `validation`
- Correct/Whole: 196/277
- Accuracy: 70.76%
- STS-b (`xlnet-base-cased-stsb`)
- `datasets` dataset `glue`, subset `stsb`, split `validation`
- Pearson correlation: 0.883111673280641
- Spearman correlation: 0.8773439961182335
- WNLI (`xlnet-base-cased-wnli`)
- `datasets` dataset `glue`, subset `wnli`, split `validation`
- Correct/Whole: 41/71
- Accuracy: 57.75%
</section>
# More details on TextAttack models (details on NLP task, output type, SOTA on paperswithcode; model card on huggingface):
<section>
Fine-tuned Model | NLP Task | Input type | Output Type | paperswithcode.com SOTA | huggingface.co Model Card
------------------------------|-----------------------------|------------------------------|-----------------------------|------------------------------|-------------------------------------
albert-base-v2-CoLA | linguistic acceptability | single sentences | binary (1=acceptable/ 0=unacceptable) | <sub><sup>https://paperswithcode.com/sota/linguistic-acceptability-on-cola </sub></sup> | <sub><sup>https://huggingface.co./textattack/albert-base-v2-CoLA </sub></sup>
bert-base-uncased-CoLA | linguistic acceptability | single sentences | binary (1=acceptable/ 0=unacceptable) | none yet | <sub><sup>https://huggingface.co./textattack/bert-base-uncased-CoLA </sub></sup>
distilbert-base-cased-CoLA | linguistic acceptability | single sentences | binary (1=acceptable/ 0=unacceptable) | <sub><sup> https://paperswithcode.com/sota/linguistic-acceptability-on-cola </sub></sup> | <sub><sup>https://huggingface.co./textattack/distilbert-base-cased-CoLA </sub></sup>
distilbert-base-uncased-CoLA | linguistic acceptability | single sentences | binary (1=acceptable/ 0=unacceptable) | <sub><sup> https://paperswithcode.com/sota/linguistic-acceptability-on-cola </sub></sup> | <sub><sup>https://huggingface.co./textattack/distilbert-base-uncased-CoLA </sub></sup>
roberta-base-CoLA | linguistic acceptability | single sentences | binary (1=acceptable/ 0=unacceptable) | <sub><sup> https://paperswithcode.com/sota/linguistic-acceptability-on-cola </sub></sup> | <sub><sup> https://huggingface.co./textattack/roberta-base-CoLA </sub></sup>
xlnet-base-cased-CoLA | linguistic acceptability | single sentences | binary (1=acceptable/ 0=unacceptable) | <sub><sup> https://paperswithcode.com/sota/linguistic-acceptability-on-cola </sub></sup> | <sub><sup>https://huggingface.co./textattack/xlnet-base-cased-CoLA </sub></sup>
albert-base-v2-RTE | natural language inference | sentence pairs (1 premise and 1 hypothesis) | binary(0=entailed/1=not entailed) | <sub><sup> https://paperswithcode.com/sota/natural-language-inference-on-rte </sub></sup> | <sub><sup> https://huggingface.co./textattack/albert-base-v2-RTE </sub></sup>
albert-base-v2-snli | natural language inference | sentence pairs | accuracy (0=entailment, 1=neutral,2=contradiction) | none yet | <sub><sup> https://huggingface.co./textattack/albert-base-v2-snli </sub></sup>
albert-base-v2-WNLI | natural language inference | sentence pairs | binary | <sub><sup> https://paperswithcode.com/sota/natural-language-inference-on-wnli </sub></sup> | <sub><sup> https://huggingface.co./textattack/albert-base-v2-WNLI</sub></sup>
bert-base-uncased-MNLI | natural language inference | sentence pairs (1 premise and 1 hypothesis) | accuracy (0=entailment, 1=neutral,2=contradiction) | none yet | <sub><sup> https://huggingface.co./textattack/bert-base-uncased-MNLI </sub></sup>
bert-base-uncased-QNLI | natural language inference | question/answer pairs | binary (1=unanswerable/ 0=answerable) | none yet |<sub><sup> https://huggingface.co./textattack/bert-base-uncased-QNLI </sub></sup>
bert-base-uncased-RTE | natural language inference | sentence pairs (1 premise and 1 hypothesis) | binary(0=entailed/1=not entailed) | none yet | <sub><sup> https://huggingface.co./textattack/bert-base-uncased-RTE </sub></sup>
bert-base-uncased-snli | natural language inference | sentence pairs | accuracy (0=entailment, 1=neutral,2=contradiction) | none yet | <sub><sup> https://huggingface.co./textattack/bert-base-uncased-snli </sub></sup>
bert-base-uncased-WNLI | natural language inference | sentence pairs | binary | none yet | <sub><sup> https://huggingface.co./textattack/bert-base-uncased-WNLI </sub></sup>
distilbert-base-cased-snli | natural language inference | sentence pairs | accuracy (0=entailment, 1=neutral,2=contradiction) | none yet | <sub><sup> https://huggingface.co./textattack/distilbert-base-cased-snli </sub></sup>
distilbert-base-uncased-MNLI | natural language inference | sentence pairs (1 premise and 1 hypothesis) | accuracy (0=entailment,1=neutral, 2=contradiction) | none yet | <sub><sup> https://huggingface.co./textattack/distilbert-base-uncased-MNLI </sub></sup>
distilbert-base-uncased-RTE | natural language inference | sentence pairs (1 premise and 1 hypothesis) | binary(0=entailed/1=not entailed) | <sub><sup> https://paperswithcode.com/sota/natural-language-inference-on-rte </sub></sup> | <sub><sup> https://huggingface.co./textattack/distilbert-base-uncased-RTE</sub></sup>
distilbert-base-uncased-WNLI | natural language inference | sentence pairs | binary | <sub><sup> https://paperswithcode.com/sota/natural-language-inference-on-wnli </sub></sup> | <sub><sup> https://huggingface.co./textattack/distilbert-base-uncased-WNLI </sub></sup>
roberta-base-QNLI | natural language inference | question/answer pairs | binary (1=unanswerable/ 0=answerable) | <sub><sup> https://paperswithcode.com/sota/natural-language-inference-on-qnli </sub></sup> | <sub><sup> https://huggingface.co./textattack/roberta-base-QNLI </sub></sup>
roberta-base-RTE | natural language inference | sentence pairs (1 premise and 1 hypothesis) | binary(0=entailed/1=not entailed) | <sub><sup> https://paperswithcode.com/sota/natural-language-inference-on-rte </sub></sup> | <sub><sup> https://huggingface.co./textattack/roberta-base-RTE</sub></sup>
roberta-base-WNLI | natural language inference | sentence pairs | binary | <sub><sup> https://paperswithcode.com/sota/natural-language-inference-on-wnli </sub></sup> | https://huggingface.co./textattack/roberta-base-WNLI </sub></sup>
xlnet-base-cased-RTE | natural language inference | sentence pairs (1 premise and 1 hypothesis) | binary(0=entailed/1=not entailed) | <sub><sup> https://paperswithcode.com/sota/ </sub></sup>natural-language-inference-on-rte | <sub><sup> https://huggingface.co./textattack/xlnet-base-cased-RTE </sub></sup>
xlnet-base-cased-WNLI | natural language inference | sentence pairs | binary | none yet | <sub><sup> https://huggingface.co./textattack/xlnet-base-cased-WNLI </sub></sup>
albert-base-v2-QQP | paraphase similarity | question pairs | binary (1=similar/0=not similar) | <sub><sup> https://paperswithcode.com/sota/question-answering-on-quora-question-pairs </sub></sup> | <sub><sup> https://huggingface.co./textattack/albert-base-v2-QQP</sub></sup>
bert-base-uncased-QQP | paraphase similarity | question pairs | binary (1=similar/0=not similar) | <sub><sup> https://paperswithcode.com/sota/question-answering-on-quora-question-pairs </sub></sup> | <sub><sup> https://huggingface.co./textattack/bert-base-uncased-QQP </sub></sup>
distilbert-base-uncased-QNLI | question answering/natural language inference | question/answer pairs | binary (1=unanswerable/ 0=answerable) | <sub><sup> https://paperswithcode.com/sota/natural-language-inference-on-qnli </sub></sup> | <sub><sup> https://huggingface.co./textattack/distilbert-base-uncased-QNLI </sub></sup>
distilbert-base-cased-QQP | question answering/paraphase similarity | question pairs | binary (1=similar/ 0=not similar) | <sub><sup> https://paperswithcode.com/sota/question-answering-on-quora-question-pairs </sub></sup> | <sub><sup> https://huggingface.co./textattack/distilbert-base-cased-QQP </sub></sup>
albert-base-v2-STS-B | semantic textual similarity | sentence pairs | similarity (0.0 to 5.0) | <sub><sup> https://paperswithcode.com/sota/semantic-textual-similarity-on-sts-benchmark </sub></sup> | <sub><sup> https://huggingface.co./textattack/albert-base-v2-STS-B </sub></sup>
bert-base-uncased-MRPC | semantic textual similarity | sentence pairs | binary (1=similar/0=not similar) | none yet | <sub><sup> https://huggingface.co./textattack/bert-base-uncased-MRPC </sub></sup>
bert-base-uncased-STS-B | semantic textual similarity | sentence pairs | similarity (0.0 to 5.0) | none yet | <sub><sup> https://huggingface.co./textattack/bert-base-uncased-STS-B </sub></sup>
distilbert-base-cased-MRPC | semantic textual similarity | sentence pairs | binary (1=similar/0=not similar) | <sub><sup> https://paperswithcode.com/sota/semantic-textual-similarity-on-mrpc </sub></sup> | <sub><sup> https://huggingface.co./textattack/distilbert-base-cased-MRPC </sub></sup>
distilbert-base-cased-STS-B | semantic textual similarity | sentence pairs | similarity (0.0 to 5.0) | <sub><sup> https://paperswithcode.com/sota/semantic-textual-similarity-on-sts-benchmark </sub></sup> | <sub><sup> https://huggingface.co./textattack/distilbert-base-cased-STS-B </sub></sup>
distilbert-base-uncased-MRPC | semantic textual similarity | sentence pairs | binary (1=similar/0=not similar) | <sub><sup> https://paperswithcode.com/sota/semantic-textual-similarity-on-mrpc </sub></sup> | <sub><sup> https://huggingface.co./textattack/distilbert-base-uncased-MRPC</sub></sup>
roberta-base-MRPC | semantic textual similarity | sentence pairs | binary (1=similar/0=not similar) | <sub><sup> https://paperswithcode.com/sota/semantic-textual-similarity-on-mrpc </sub></sup> | <sub><sup> https://huggingface.co./textattack/roberta-base-MRPC </sub></sup>
roberta-base-STS-B | semantic textual similarity | sentence pairs | similarity (0.0 to 5.0) | <sub><sup> https://paperswithcode.com/sota/semantic-textual-similarity-on-sts-benchmark </sub></sup> | <sub><sup> https://huggingface.co./textattack/roberta-base-STS-B </sub></sup>
xlnet-base-cased-MRPC | semantic textual similarity | sentence pairs | binary (1=similar/0=not similar) | <sub><sup> https://paperswithcode.com/sota/semantic-textual-similarity-on-mrpc </sub></sup> | <sub><sup> https://huggingface.co./textattack/xlnet-base-cased-MRPC </sub></sup>
xlnet-base-cased-STS-B | semantic textual similarity | sentence pairs | similarity (0.0 to 5.0) | <sub><sup> https://paperswithcode.com/sota/semantic-textual-similarity-on-sts-benchmark </sub></sup> | <sub><sup> https://huggingface.co./textattack/xlnet-base-cased-STS-B </sub></sup>
albert-base-v2-imdb | sentiment analysis | movie reviews | binary (1=good/0=bad) | none yet | <sub><sup> https://huggingface.co./textattack/albert-base-v2-imdb </sub></sup>
albert-base-v2-rotten-tomatoes | sentiment analysis | movie reviews | binary (1=good/0=bad) | none yet | <sub><sup> https://huggingface.co./textattack/albert-base-v2-rotten-tomatoes </sub></sup>
albert-base-v2-SST-2 | sentiment analysis | phrases | accuracy (0.0000 to 1.0000) | <sub><sup> https://paperswithcode.com/sota/sentiment-analysis-on-sst-2-binary </sub></sup> | <sub><sup> https://huggingface.co./textattack/albert-base-v2-SST-2 </sub></sup>
albert-base-v2-yelp-polarity | sentiment analysis | yelp reviews | binary (1=good/0=bad) | none yet | <sub><sup> https://huggingface.co./textattack/albert-base-v2-yelp-polarity </sub></sup>
bert-base-uncased-imdb | sentiment analysis | movie reviews | binary (1=good/0=bad) | none yet | <sub><sup> https://huggingface.co./textattack/bert-base-uncased-imdb </sub></sup>
bert-base-uncased-rotten-tomatoes | sentiment analysis | movie reviews | binary (1=good/0=bad) | none yet | <sub><sup> https://huggingface.co./textattack/bert-base-uncased-rotten-tomatoes </sub></sup>
bert-base-uncased-SST-2 | sentiment analysis | phrases | accuracy (0.0000 to 1.0000) | <sub><sup> https://paperswithcode.com/sota/sentiment-analysis-on-sst-2-binary </sub></sup> | <sub><sup> https://huggingface.co./textattack/bert-base-uncased-SST-2 </sub></sup>
bert-base-uncased-yelp-polarity | sentiment analysis | yelp reviews | binary (1=good/0=bad) | <sub><sup> https://paperswithcode.com/sota/sentiment-analysis-on-yelp-binary </sub></sup> | <sub><sup> https://huggingface.co./textattack/bert-base-uncased-yelp-polarity </sub></sup>
cnn-imdb | sentiment analysis | movie reviews | binary (1=good/0=bad) | <sub><sup> https://paperswithcode.com/sota/sentiment-analysis-on-imdb </sub></sup> | none
cnn-mr | sentiment analysis | movie reviews | binary (1=good/0=bad) | none yet | none
cnn-sst2 | sentiment analysis | phrases | accuracy (0.0000 to 1.0000) | <sub><sup> https://paperswithcode.com/sota/sentiment-analysis-on-sst-2-binary </sub></sup> | none
cnn-yelp | sentiment analysis | yelp reviews | binary (1=good/0=bad) | <sub><sup> https://paperswithcode.com/sota/sentiment-analysis-on-yelp-binary </sub></sup> | none
distilbert-base-cased-SST-2 | sentiment analysis | phrases | accuracy (0.0000 to 1.0000) | <sub><sup> https://paperswithcode.com/sota/sentiment-analysis-on-sst-2-binary </sub></sup> | <sub><sup> https://huggingface.co./textattack/distilbert-base-cased-SST-2 </sub></sup>
distilbert-base-uncased-imdb | sentiment analysis | movie reviews | binary (1=good/0=bad) | <sub><sup> https://paperswithcode.com/sota/sentiment-analysis-on-imdb</sub></sup> | <sub><sup> https://huggingface.co./textattack/distilbert-base-uncased-imdb </sub></sup>
distilbert-base-uncased-rotten-tomatoes | sentiment analysis | movie reviews | binary (1=good/0=bad) | none yet | <sub><sup> https://huggingface.co./textattack/distilbert-base-uncased-rotten-tomatoes </sub></sup>
lstm-imdb | sentiment analysis | movie reviews | binary (1=good/0=bad) | <sub><sup> https://paperswithcode.com/sota/sentiment-analysis-on-imdb </sub></sup> | none
lstm-mr | sentiment analysis | movie reviews | binary (1=good/0=bad) | none yet | none
lstm-sst2 | sentiment analysis | phrases | accuracy (0.0000 to 1.0000) | none yet | none
lstm-yelp | sentiment analysis | yelp reviews | binary (1=good/0=bad) | none yet | none
roberta-base-imdb | sentiment analysis | movie reviews | binary (1=good/0=bad) | none yet | <sub><sup> https://huggingface.co./textattack/roberta-base-imdb </sub></sup>
roberta-base-rotten-tomatoes | sentiment analysis | movie reviews | binary (1=good/0=bad) | none yet | <sub><sup> https://huggingface.co./textattack/roberta-base-rotten-tomatoes </sub></sup>
roberta-base-SST-2 | sentiment analysis | phrases | accuracy (0.0000 to 1.0000) | <sub><sup> https://paperswithcode.com/sota/sentiment-analysis-on-sst-2-binary </sub></sup> | <sub><sup> https://huggingface.co./textattack/roberta-base-SST-2 </sub></sup>
xlnet-base-cased-imdb | sentiment analysis | movie reviews | binary (1=good/0=bad) | none yet | <sub><sup> https://huggingface.co./textattack/xlnet-base-cased-imdb </sub></sup>
xlnet-base-cased-rotten-tomatoes | sentiment analysis | movie reviews | binary (1=good/0=bad) | none yet | <sub><sup> https://huggingface.co./textattack/xlnet-base-cased-rotten-tomatoes </sub></sup>
albert-base-v2-ag-news | text classification | news articles | news category | none yet | <sub><sup> https://huggingface.co./textattack/albert-base-v2-ag-news </sub></sup>
bert-base-uncased-ag-news | text classification | news articles | news category | none yet | <sub><sup> https://huggingface.co./textattack/bert-base-uncased-ag-news </sub></sup>
cnn-ag-news | text classification | news articles | news category | <sub><sup> https://paperswithcode.com/sota/text-classification-on-ag-news </sub></sup> | none
distilbert-base-uncased-ag-news | text classification | news articles | news category | none yet | <sub><sup> https://huggingface.co./textattack/distilbert-base-uncased-ag-news </sub></sup>
lstm-ag-news | text classification | news articles | news category | <sub><sup> https://paperswithcode.com/sota/text-classification-on-ag-news </sub></sup> | none
roberta-base-ag-news | text classification | news articles | news category | none yet | <sub><sup> https://huggingface.co./textattack/roberta-base-ag-news </sub></sup>
</section>
|