Spaces:
Runtime error
Runtime error
PFEemp2024
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,343 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
demo
|
7 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
import zipfile
|
3 |
+
|
4 |
import gradio as gr
|
5 |
+
import nltk
|
6 |
+
import pandas as pd
|
7 |
+
import requests
|
8 |
+
|
9 |
+
from pyabsa import TADCheckpointManager
|
10 |
+
from textattack.attack_recipes import (
|
11 |
+
BAEGarg2019,
|
12 |
+
PWWSRen2019,
|
13 |
+
TextFoolerJin2019,
|
14 |
+
PSOZang2020,
|
15 |
+
IGAWang2019,
|
16 |
+
GeneticAlgorithmAlzantot2018,
|
17 |
+
DeepWordBugGao2018,
|
18 |
+
CLARE2020,
|
19 |
+
)
|
20 |
+
from textattack.attack_results import SuccessfulAttackResult
|
21 |
+
from utils import SentAttacker, get_agnews_example, get_sst2_example, get_amazon_example, get_imdb_example, diff_texts
|
22 |
+
# from utils import get_yahoo_example
|
23 |
+
|
24 |
+
sent_attackers = {}
|
25 |
+
tad_classifiers = {}
|
26 |
+
|
27 |
+
attack_recipes = {
|
28 |
+
"bae": BAEGarg2019,
|
29 |
+
"pwws": PWWSRen2019,
|
30 |
+
"textfooler": TextFoolerJin2019,
|
31 |
+
"pso": PSOZang2020,
|
32 |
+
"iga": IGAWang2019,
|
33 |
+
"ga": GeneticAlgorithmAlzantot2018,
|
34 |
+
"deepwordbug": DeepWordBugGao2018,
|
35 |
+
"clare": CLARE2020,
|
36 |
+
}
|
37 |
+
|
38 |
+
|
39 |
+
def init():
|
40 |
+
nltk.download("omw-1.4")
|
41 |
+
|
42 |
+
if not os.path.exists("TAD-SST2"):
|
43 |
+
z = zipfile.ZipFile("checkpoints.zip", "r")
|
44 |
+
z.extractall(os.getcwd())
|
45 |
+
|
46 |
+
for attacker in ["pwws", "bae", "textfooler", "deepwordbug"]:
|
47 |
+
for dataset in [
|
48 |
+
"agnews10k",
|
49 |
+
"amazon",
|
50 |
+
"sst2",
|
51 |
+
"yahoo",
|
52 |
+
# 'imdb'
|
53 |
+
]:
|
54 |
+
if "tad-{}".format(dataset) not in tad_classifiers:
|
55 |
+
tad_classifiers[
|
56 |
+
"tad-{}".format(dataset)
|
57 |
+
] = TADCheckpointManager.get_tad_text_classifier(
|
58 |
+
"tad-{}".format(dataset).upper()
|
59 |
+
)
|
60 |
+
|
61 |
+
sent_attackers["tad-{}{}".format(dataset, attacker)] = SentAttacker(
|
62 |
+
tad_classifiers["tad-{}".format(dataset)], attack_recipes[attacker]
|
63 |
+
)
|
64 |
+
tad_classifiers["tad-{}".format(dataset)].sent_attacker = sent_attackers[
|
65 |
+
"tad-{}pwws".format(dataset)
|
66 |
+
]
|
67 |
+
|
68 |
+
|
69 |
+
cache = set()
|
70 |
+
|
71 |
+
|
72 |
+
def generate_adversarial_example(dataset, attacker, text=None, label=None):
|
73 |
+
if not text or text in cache:
|
74 |
+
if "agnews" in dataset.lower():
|
75 |
+
text, label = get_agnews_example()
|
76 |
+
elif "sst2" in dataset.lower():
|
77 |
+
text, label = get_sst2_example()
|
78 |
+
elif "amazon" in dataset.lower():
|
79 |
+
text, label = get_amazon_example()
|
80 |
+
# elif "yahoo" in dataset.lower():
|
81 |
+
# text, label = get_yahoo_example()
|
82 |
+
elif "imdb" in dataset.lower():
|
83 |
+
text, label = get_imdb_example()
|
84 |
+
|
85 |
+
cache.add(text)
|
86 |
+
|
87 |
+
result = None
|
88 |
+
attack_result = sent_attackers[
|
89 |
+
"tad-{}{}".format(dataset.lower(), attacker.lower())
|
90 |
+
].attacker.simple_attack(text, int(label))
|
91 |
+
if isinstance(attack_result, SuccessfulAttackResult):
|
92 |
+
if (
|
93 |
+
attack_result.perturbed_result.output
|
94 |
+
!= attack_result.original_result.ground_truth_output
|
95 |
+
) and (
|
96 |
+
attack_result.original_result.output
|
97 |
+
== attack_result.original_result.ground_truth_output
|
98 |
+
):
|
99 |
+
# with defense
|
100 |
+
result = tad_classifiers["tad-{}".format(dataset.lower())].infer(
|
101 |
+
attack_result.perturbed_result.attacked_text.text
|
102 |
+
+ "$LABEL${},{},{}".format(
|
103 |
+
attack_result.original_result.ground_truth_output,
|
104 |
+
1,
|
105 |
+
attack_result.perturbed_result.output,
|
106 |
+
),
|
107 |
+
print_result=True,
|
108 |
+
defense=attacker,
|
109 |
+
)
|
110 |
+
|
111 |
+
if result:
|
112 |
+
classification_df = {}
|
113 |
+
classification_df["is_repaired"] = result["is_fixed"]
|
114 |
+
classification_df["pred_label"] = result["label"]
|
115 |
+
classification_df["confidence"] = round(result["confidence"], 3)
|
116 |
+
classification_df["is_correct"] = str(result["pred_label"]) == str(label)
|
117 |
+
|
118 |
+
advdetection_df = {}
|
119 |
+
if result["is_adv_label"] != "0":
|
120 |
+
advdetection_df["is_adversarial"] = {
|
121 |
+
"0": False,
|
122 |
+
"1": True,
|
123 |
+
0: False,
|
124 |
+
1: True,
|
125 |
+
}[result["is_adv_label"]]
|
126 |
+
advdetection_df["perturbed_label"] = result["perturbed_label"]
|
127 |
+
advdetection_df["confidence"] = round(result["is_adv_confidence"], 3)
|
128 |
+
advdetection_df['ref_is_attack'] = result['ref_is_adv_label']
|
129 |
+
advdetection_df['is_correct'] = result['ref_is_adv_check']
|
130 |
+
|
131 |
+
else:
|
132 |
+
return generate_adversarial_example(dataset, attacker)
|
133 |
+
|
134 |
+
return (
|
135 |
+
text,
|
136 |
+
label,
|
137 |
+
result["restored_text"],
|
138 |
+
result["label"],
|
139 |
+
attack_result.perturbed_result.attacked_text.text,
|
140 |
+
diff_texts(text, text),
|
141 |
+
diff_texts(text, attack_result.perturbed_result.attacked_text.text),
|
142 |
+
diff_texts(text, result["restored_text"]),
|
143 |
+
attack_result.perturbed_result.output,
|
144 |
+
pd.DataFrame(classification_df, index=[0]),
|
145 |
+
pd.DataFrame(advdetection_df, index=[0]),
|
146 |
+
)
|
147 |
+
|
148 |
+
|
149 |
+
def run_demo(dataset, attacker, text=None, label=None):
|
150 |
+
try:
|
151 |
+
data = {
|
152 |
+
"dataset": dataset,
|
153 |
+
"attacker": attacker,
|
154 |
+
"text": text,
|
155 |
+
"label": label,
|
156 |
+
}
|
157 |
+
response = requests.post('https://rpddemo.pagekite.me/api/generate_adversarial_example', json=data)
|
158 |
+
result = response.json()
|
159 |
+
print(response.json())
|
160 |
+
return (
|
161 |
+
result["text"],
|
162 |
+
result["label"],
|
163 |
+
result["restored_text"],
|
164 |
+
result["result_label"],
|
165 |
+
result["perturbed_text"],
|
166 |
+
result["text_diff"],
|
167 |
+
result["perturbed_diff"],
|
168 |
+
result["restored_diff"],
|
169 |
+
result["output"],
|
170 |
+
pd.DataFrame(result["classification_df"]),
|
171 |
+
pd.DataFrame(result["advdetection_df"]),
|
172 |
+
result["message"]
|
173 |
+
)
|
174 |
+
except Exception as e:
|
175 |
+
print(e)
|
176 |
+
return generate_adversarial_example(dataset, attacker, text, label)
|
177 |
+
|
178 |
+
|
179 |
+
def check_gpu():
|
180 |
+
try:
|
181 |
+
response = requests.post('https://rpddemo.pagekite.me/api/generate_adversarial_example', timeout=3)
|
182 |
+
if response.status_code < 500:
|
183 |
+
return 'GPU available'
|
184 |
+
else:
|
185 |
+
return 'GPU not available'
|
186 |
+
except Exception as e:
|
187 |
+
return 'GPU not available'
|
188 |
+
|
189 |
+
|
190 |
+
if __name__ == "__main__":
|
191 |
+
try:
|
192 |
+
init()
|
193 |
+
except Exception as e:
|
194 |
+
print(e)
|
195 |
+
print("Failed to initialize the demo. Please try again later.")
|
196 |
+
|
197 |
+
demo = gr.Blocks()
|
198 |
+
|
199 |
+
with demo:
|
200 |
+
gr.Markdown("<h1 align='center'>Reactive Perturbation Defocusing (Rapid) for Textual Adversarial Defense</h1>")
|
201 |
+
gr.Markdown("<h3 align='center'>Clarifications</h2>")
|
202 |
+
gr.Markdown("""
|
203 |
+
- This demo has no mechanism to ensure the adversarial example will be correctly repaired by Rapid. The repair success rate is actually the performance reported in the paper.
|
204 |
+
- The adversarial example and repaired adversarial example may be unnatural to read, while it is because the attackers usually generate unnatural perturbations. Rapid does not introduce additional unnatural perturbations.
|
205 |
+
- To our best knowledge, Reactive Perturbation Defocusing is a novel approach in adversarial defense. Rapid significantly (>10% defense accuracy improvement) outperforms the state-of-the-art methods.
|
206 |
+
- The DeepWordBug is an unknown attacker to the adversarial detector and reactive defense module. DeepWordBug has different attacking patterns from other attackers and shows the generalizability and robustness of Rapid.
|
207 |
+
""")
|
208 |
+
gr.Markdown("<h2 align='center'>Natural Example Input</h2>")
|
209 |
+
with gr.Group():
|
210 |
+
with gr.Row():
|
211 |
+
input_dataset = gr.Radio(
|
212 |
+
choices=["SST2", "Amazon", "Yahoo", "AGNews10K"],
|
213 |
+
value="SST2",
|
214 |
+
label="Select a testing dataset and an adversarial attacker to generate an adversarial example.",
|
215 |
+
)
|
216 |
+
input_attacker = gr.Radio(
|
217 |
+
choices=["BAE", "PWWS", "TextFooler", "DeepWordBug"],
|
218 |
+
value="TextFooler",
|
219 |
+
label="Choose an Adversarial Attacker for generating an adversarial example to attack the model.",
|
220 |
+
)
|
221 |
+
with gr.Group(visible=False):
|
222 |
+
|
223 |
+
with gr.Row():
|
224 |
+
input_sentence = gr.Textbox(
|
225 |
+
placeholder="Input a natural example...",
|
226 |
+
label="Alternatively, input a natural example and its original label (from above datasets) to generate an adversarial example.",
|
227 |
+
visible=False
|
228 |
+
)
|
229 |
+
input_label = gr.Textbox(
|
230 |
+
placeholder="Original label, (must be a integer, because we use digits to represent labels in training)",
|
231 |
+
label="Original Label",
|
232 |
+
visible=False
|
233 |
+
)
|
234 |
+
gr.Markdown(
|
235 |
+
"<h3 align='center'>To input an example, please select a dataset which the example belongs to or resembles.</h2>",
|
236 |
+
visible=False
|
237 |
+
)
|
238 |
+
|
239 |
+
msg_text = gr.Textbox(
|
240 |
+
label="Message",
|
241 |
+
placeholder="This is a message box to show any error messages.",
|
242 |
+
)
|
243 |
+
button_gen = gr.Button(
|
244 |
+
"Generate an adversarial example to repair using Rapid (GPU: < 1 minute, CPU: 1-10 minutes)",
|
245 |
+
variant="primary",
|
246 |
+
)
|
247 |
+
gpu_status_text = gr.Textbox(
|
248 |
+
label='GPU status',
|
249 |
+
placeholder="Please click to check",
|
250 |
+
)
|
251 |
+
button_check = gr.Button(
|
252 |
+
"Check if GPU available",
|
253 |
+
variant="primary"
|
254 |
+
)
|
255 |
+
|
256 |
+
button_check.click(
|
257 |
+
fn=check_gpu,
|
258 |
+
inputs=[],
|
259 |
+
outputs=[
|
260 |
+
gpu_status_text
|
261 |
+
]
|
262 |
+
)
|
263 |
+
|
264 |
+
gr.Markdown("<h2 align='center'>Generated Adversarial Example and Repaired Adversarial Example</h2>")
|
265 |
+
|
266 |
+
with gr.Column():
|
267 |
+
with gr.Group():
|
268 |
+
with gr.Row():
|
269 |
+
output_original_example = gr.Textbox(label="Original Example")
|
270 |
+
output_original_label = gr.Textbox(label="Original Label")
|
271 |
+
with gr.Row():
|
272 |
+
output_adv_example = gr.Textbox(label="Adversarial Example")
|
273 |
+
output_adv_label = gr.Textbox(label="Predicted Label of the Adversarial Example")
|
274 |
+
with gr.Row():
|
275 |
+
output_repaired_example = gr.Textbox(
|
276 |
+
label="Repaired Adversarial Example by Rapid"
|
277 |
+
)
|
278 |
+
output_repaired_label = gr.Textbox(label="Predicted Label of the Repaired Adversarial Example")
|
279 |
+
|
280 |
+
gr.Markdown("<h2 align='center'>Example Difference (Comparisons)</p>")
|
281 |
+
gr.Markdown("""
|
282 |
+
<p align='center'>The (+) and (-) in the boxes indicate the added and deleted characters in the adversarial example compared to the original input natural example.</p>
|
283 |
+
""")
|
284 |
+
ori_text_diff = gr.HighlightedText(
|
285 |
+
label="The Original Natural Example",
|
286 |
+
combine_adjacent=True,
|
287 |
+
)
|
288 |
+
adv_text_diff = gr.HighlightedText(
|
289 |
+
label="Character Editions of Adversarial Example Compared to the Natural Example",
|
290 |
+
combine_adjacent=True,
|
291 |
+
)
|
292 |
+
restored_text_diff = gr.HighlightedText(
|
293 |
+
label="Character Editions of Repaired Adversarial Example Compared to the Natural Example",
|
294 |
+
combine_adjacent=True,
|
295 |
+
)
|
296 |
+
|
297 |
+
gr.Markdown(
|
298 |
+
"## <h2 align='center'>The Output of Reactive Perturbation Defocusing</p>"
|
299 |
+
)
|
300 |
+
with gr.Row():
|
301 |
+
with gr.Column():
|
302 |
+
with gr.Group():
|
303 |
+
output_is_adv_df = gr.DataFrame(
|
304 |
+
label="Adversarial Example Detection Result"
|
305 |
+
)
|
306 |
+
gr.Markdown(
|
307 |
+
"The is_adversarial field indicates if an adversarial example is detected. "
|
308 |
+
"The perturbed_label is the predicted label of the adversarial example. "
|
309 |
+
"The confidence field represents the confidence of the predicted adversarial example detection. "
|
310 |
+
)
|
311 |
+
with gr.Column():
|
312 |
+
with gr.Group():
|
313 |
+
output_df = gr.DataFrame(
|
314 |
+
label="Repaired Standard Classification Result"
|
315 |
+
)
|
316 |
+
gr.Markdown(
|
317 |
+
"If is_repaired=true, it has been repaired by Rapid. "
|
318 |
+
"The pred_label field indicates the standard classification result. "
|
319 |
+
"The confidence field represents the confidence of the predicted label. "
|
320 |
+
"The is_correct field indicates whether the predicted label is correct."
|
321 |
+
)
|
322 |
|
323 |
+
# Bind functions to buttons
|
324 |
+
button_gen.click(
|
325 |
+
fn=run_demo,
|
326 |
+
inputs=[input_dataset, input_attacker, input_sentence, input_label],
|
327 |
+
outputs=[
|
328 |
+
output_original_example,
|
329 |
+
output_original_label,
|
330 |
+
output_repaired_example,
|
331 |
+
output_repaired_label,
|
332 |
+
output_adv_example,
|
333 |
+
ori_text_diff,
|
334 |
+
adv_text_diff,
|
335 |
+
restored_text_diff,
|
336 |
+
output_adv_label,
|
337 |
+
output_df,
|
338 |
+
output_is_adv_df,
|
339 |
+
msg_text
|
340 |
+
],
|
341 |
+
)
|
342 |
|
343 |
+
demo.queue(2).launch()
|
|