Spaces:
Runtime error
Runtime error
File size: 6,288 Bytes
c2c01a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import random
from difflib import Differ
from textattack.attack_recipes import BAEGarg2019
from textattack.datasets import Dataset
from textattack.models.wrappers import HuggingFaceModelWrapper
from findfile import find_files
from flask import Flask
from textattack import Attacker
class ModelWrapper(HuggingFaceModelWrapper):
def __init__(self, model):
self.model = model # pipeline = pipeline
def __call__(self, text_inputs, **kwargs):
outputs = []
for text_input in text_inputs:
raw_outputs = self.model.infer(text_input, print_result=False, **kwargs)
outputs.append(raw_outputs["probs"])
return outputs
class SentAttacker:
def __init__(self, model, recipe_class=BAEGarg2019):
model = model
model_wrapper = ModelWrapper(model)
recipe = recipe_class.build(model_wrapper)
# WordNet defaults to english. Set the default language to French ('fra')
# recipe.transformation.language = "en"
_dataset = [("", 0)]
_dataset = Dataset(_dataset)
self.attacker = Attacker(recipe, _dataset)
def diff_texts(text1, text2):
d = Differ()
return [
(token[2:], token[0] if token[0] != " " else None)
for token in d.compare(text1, text2)
]
def get_ensembled_tad_results(results):
target_dict = {}
for r in results:
target_dict[r["label"]] = (
target_dict.get(r["label"]) + 1 if r["label"] in target_dict else 1
)
return dict(zip(target_dict.values(), target_dict.keys()))[
max(target_dict.values())
]
def get_sst2_example():
filter_key_words = [
".py",
".md",
"readme",
"log",
"result",
"zip",
".state_dict",
".model",
".png",
"acc_",
"f1_",
".origin",
".adv",
".csv",
]
dataset_file = {"train": [], "test": [], "valid": []}
dataset = "sst2"
search_path = "./"
task = "text_defense"
dataset_file["test"] += find_files(
search_path,
[dataset, "test", task],
exclude_key=[".adv", ".org", ".defense", ".inference", "train."]
+ filter_key_words,
)
for dat_type in ["test"]:
data = []
label_set = set()
for data_file in dataset_file[dat_type]:
with open(data_file, mode="r", encoding="utf8") as fin:
lines = fin.readlines()
for line in lines:
text, label = line.split("$LABEL$")
text = text.strip()
label = int(label.strip())
data.append((text, label))
label_set.add(label)
return random.choice(data)
def get_agnews_example():
filter_key_words = [
".py",
".md",
"readme",
"log",
"result",
"zip",
".state_dict",
".model",
".png",
"acc_",
"f1_",
".origin",
".adv",
".csv",
]
dataset_file = {"train": [], "test": [], "valid": []}
dataset = "agnews"
search_path = "./"
task = "text_defense"
dataset_file["test"] += find_files(
search_path,
[dataset, "test", task],
exclude_key=[".adv", ".org", ".defense", ".inference", "train."]
+ filter_key_words,
)
for dat_type in ["test"]:
data = []
label_set = set()
for data_file in dataset_file[dat_type]:
with open(data_file, mode="r", encoding="utf8") as fin:
lines = fin.readlines()
for line in lines:
text, label = line.split("$LABEL$")
text = text.strip()
label = int(label.strip())
data.append((text, label))
label_set.add(label)
return random.choice(data)
def get_amazon_example():
filter_key_words = [
".py",
".md",
"readme",
"log",
"result",
"zip",
".state_dict",
".model",
".png",
"acc_",
"f1_",
".origin",
".adv",
".csv",
]
dataset_file = {"train": [], "test": [], "valid": []}
dataset = "amazon"
search_path = "./"
task = "text_defense"
dataset_file["test"] += find_files(
search_path,
[dataset, "test", task],
exclude_key=[".adv", ".org", ".defense", ".inference", "train."]
+ filter_key_words,
)
for dat_type in ["test"]:
data = []
label_set = set()
for data_file in dataset_file[dat_type]:
with open(data_file, mode="r", encoding="utf8") as fin:
lines = fin.readlines()
for line in lines:
text, label = line.split("$LABEL$")
text = text.strip()
label = int(label.strip())
data.append((text, label))
label_set.add(label)
return random.choice(data)
def get_imdb_example():
filter_key_words = [
".py",
".md",
"readme",
"log",
"result",
"zip",
".state_dict",
".model",
".png",
"acc_",
"f1_",
".origin",
".adv",
".csv",
]
dataset_file = {"train": [], "test": [], "valid": []}
dataset = "imdb"
search_path = "./"
task = "text_defense"
dataset_file["test"] += find_files(
search_path,
[dataset, "test", task],
exclude_key=[".adv", ".org", ".defense", ".inference", "train."]
+ filter_key_words,
)
for dat_type in ["test"]:
data = []
label_set = set()
for data_file in dataset_file[dat_type]:
with open(data_file, mode="r", encoding="utf8") as fin:
lines = fin.readlines()
for line in lines:
text, label = line.split("$LABEL$")
text = text.strip()
label = int(label.strip())
data.append((text, label))
label_set.add(label)
return random.choice(data)
|