Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 Alibaba DAMO-VILAB and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
from dataclasses import dataclass | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import numpy as np | |
import PIL | |
import torch | |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection | |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
from diffusers.models import AutoencoderKL | |
from diffusers.models.unets.unet_i2vgen_xl import I2VGenXLUNet | |
from diffusers.schedulers import DDIMScheduler | |
from diffusers.utils import ( | |
BaseOutput, | |
logging, | |
replace_example_docstring, | |
) | |
from diffusers.utils.torch_utils import randn_tensor | |
from diffusers.video_processor import VideoProcessor | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin | |
import random | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import torch | |
>>> from diffusers import I2VGenXLPipeline | |
>>> from diffusers.utils import export_to_gif, load_image | |
>>> pipeline = I2VGenXLPipeline.from_pretrained( | |
... "ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16" | |
... ) | |
>>> pipeline.enable_model_cpu_offload() | |
>>> image_url = ( | |
... "https://huggingface.co./datasets/diffusers/docs-images/resolve/main/i2vgen_xl_images/img_0009.png" | |
... ) | |
>>> image = load_image(image_url).convert("RGB") | |
>>> prompt = "Papers were floating in the air on a table in the library" | |
>>> negative_prompt = "Distorted, discontinuous, Ugly, blurry, low resolution, motionless, static, disfigured, disconnected limbs, Ugly faces, incomplete arms" | |
>>> generator = torch.manual_seed(8888) | |
>>> frames = pipeline( | |
... prompt=prompt, | |
... image=image, | |
... num_inference_steps=50, | |
... negative_prompt=negative_prompt, | |
... guidance_scale=9.0, | |
... generator=generator, | |
... ).frames[0] | |
>>> video_path = export_to_gif(frames, "i2v.gif") | |
``` | |
""" | |
class I2VGenXLPipelineOutput(BaseOutput): | |
r""" | |
Output class for image-to-video pipeline. | |
Args: | |
frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]): | |
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing | |
denoised | |
PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape | |
`(batch_size, num_frames, channels, height, width)` | |
""" | |
frames: Union[torch.Tensor, np.ndarray, List[List[PIL.Image.Image]]] | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents | |
def retrieve_latents( | |
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" | |
): | |
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | |
return encoder_output.latent_dist.sample(generator) | |
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | |
return encoder_output.latent_dist.mode() | |
elif hasattr(encoder_output, "latents"): | |
return encoder_output.latents | |
else: | |
raise AttributeError( | |
"Could not access latents of provided encoder_output") | |
class I2VGenXLPipeline( | |
DiffusionPipeline, | |
StableDiffusionMixin, | |
): | |
r""" | |
Pipeline for image-to-video generation as proposed in [I2VGenXL](https://i2vgen-xl.github.io/). | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`CLIPTextModel`]): | |
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co./openai/clip-vit-large-patch14)). | |
tokenizer (`CLIPTokenizer`): | |
A [`~transformers.CLIPTokenizer`] to tokenize text. | |
unet ([`I2VGenXLUNet`]): | |
A [`I2VGenXLUNet`] to denoise the encoded video latents. | |
scheduler ([`DDIMScheduler`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. | |
""" | |
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
image_encoder: CLIPVisionModelWithProjection, | |
feature_extractor: CLIPImageProcessor, | |
unet: I2VGenXLUNet, | |
scheduler: DDIMScheduler, | |
): | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
image_encoder=image_encoder, | |
feature_extractor=feature_extractor, | |
unet=unet, | |
scheduler=scheduler, | |
) | |
self.vae_scale_factor = 2 ** ( | |
len(self.vae.config.block_out_channels) - 1) | |
# `do_resize=False` as we do custom resizing. | |
self.video_processor = VideoProcessor( | |
vae_scale_factor=self.vae_scale_factor, do_resize=False) | |
def guidance_scale(self): | |
return self._guidance_scale | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
def do_classifier_free_guidance(self): | |
return self._guidance_scale > 1 | |
def encode_prompt( | |
self, | |
prompt, | |
device, | |
num_videos_per_prompt, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
clip_skip: Optional[int] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_videos_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
""" | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if prompt_embeds is None: | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer( | |
prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = self.tokenizer.batch_decode( | |
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
if clip_skip is None: | |
prompt_embeds = self.text_encoder( | |
text_input_ids.to(device), attention_mask=attention_mask) | |
prompt_embeds = prompt_embeds[0] | |
else: | |
prompt_embeds = self.text_encoder( | |
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True | |
) | |
# Access the `hidden_states` first, that contains a tuple of | |
# all the hidden states from the encoder layers. Then index into | |
# the tuple to access the hidden states from the desired layer. | |
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] | |
# We also need to apply the final LayerNorm here to not mess with the | |
# representations. The `last_hidden_states` that we typically use for | |
# obtaining the final prompt representations passes through the LayerNorm | |
# layer. | |
prompt_embeds = self.text_encoder.text_model.final_layer_norm( | |
prompt_embeds) | |
if self.text_encoder is not None: | |
prompt_embeds_dtype = self.text_encoder.dtype | |
elif self.unet is not None: | |
prompt_embeds_dtype = self.unet.dtype | |
else: | |
prompt_embeds_dtype = prompt_embeds.dtype | |
prompt_embeds = prompt_embeds.to( | |
dtype=prompt_embeds_dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view( | |
bs_embed * num_videos_per_prompt, seq_len, -1) | |
# get unconditional embeddings for classifier free guidance | |
if self.do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif prompt is not None and type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
max_length = prompt_embeds.shape[1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
# Apply clip_skip to negative prompt embeds | |
if clip_skip is None: | |
negative_prompt_embeds = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
negative_prompt_embeds = negative_prompt_embeds[0] | |
else: | |
negative_prompt_embeds = self.text_encoder( | |
uncond_input.input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True | |
) | |
# Access the `hidden_states` first, that contains a tuple of | |
# all the hidden states from the encoder layers. Then index into | |
# the tuple to access the hidden states from the desired layer. | |
negative_prompt_embeds = negative_prompt_embeds[-1][-( | |
clip_skip + 1)] | |
# We also need to apply the final LayerNorm here to not mess with the | |
# representations. The `last_hidden_states` that we typically use for | |
# obtaining the final prompt representations passes through the LayerNorm | |
# layer. | |
negative_prompt_embeds = self.text_encoder.text_model.final_layer_norm( | |
negative_prompt_embeds) | |
if self.do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to( | |
dtype=prompt_embeds_dtype, device=device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat( | |
1, num_videos_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view( | |
batch_size * num_videos_per_prompt, seq_len, -1) | |
return prompt_embeds, negative_prompt_embeds | |
def _encode_image(self, image, device, num_videos_per_prompt): | |
dtype = next(self.image_encoder.parameters()).dtype | |
if not isinstance(image, torch.Tensor): | |
image = self.video_processor.pil_to_numpy(image) | |
image = self.video_processor.numpy_to_pt(image) | |
# Normalize the image with CLIP training stats. | |
image = self.feature_extractor( | |
images=image, | |
do_normalize=True, | |
do_center_crop=False, | |
do_resize=False, | |
do_rescale=False, | |
return_tensors="pt", | |
).pixel_values | |
image = image.to(device=device, dtype=dtype) | |
image_embeddings = self.image_encoder(image).image_embeds | |
image_embeddings = image_embeddings.unsqueeze(1) | |
# duplicate image embeddings for each generation per prompt, using mps friendly method | |
bs_embed, seq_len, _ = image_embeddings.shape | |
image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1) | |
image_embeddings = image_embeddings.view( | |
bs_embed * num_videos_per_prompt, seq_len, -1) | |
if self.do_classifier_free_guidance: | |
negative_image_embeddings = torch.zeros_like(image_embeddings) | |
image_embeddings = torch.cat( | |
[negative_image_embeddings, image_embeddings]) | |
return image_embeddings | |
def decode_latents(self, latents, decode_chunk_size=None): | |
latents = 1 / self.vae.config.scaling_factor * latents | |
batch_size, channels, num_frames, height, width = latents.shape | |
latents = latents.permute(0, 2, 1, 3, 4).reshape( | |
batch_size * num_frames, channels, height, width) | |
if decode_chunk_size is not None: | |
frames = [] | |
for i in range(0, latents.shape[0], decode_chunk_size): | |
frame = self.vae.decode( | |
latents[i: i + decode_chunk_size]).sample | |
frames.append(frame) | |
image = torch.cat(frames, dim=0) | |
else: | |
image = self.vae.decode(latents).sample | |
decode_shape = (batch_size, num_frames, -1) + image.shape[2:] | |
video = image[None, :].reshape(decode_shape).permute(0, 2, 1, 3, 4) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
video = video.float() | |
return video | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature( | |
self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set( | |
inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs( | |
self, | |
prompt, | |
image, | |
height, | |
width, | |
negative_prompt=None, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
): | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError( | |
f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError( | |
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
if ( | |
not isinstance(image, torch.Tensor) | |
and not isinstance(image, PIL.Image.Image) | |
and not isinstance(image, list) | |
): | |
raise ValueError( | |
"`image` has to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is" | |
f" {type(image)}" | |
) | |
def prepare_image_latents( | |
self, | |
image, | |
device, | |
num_frames, | |
num_videos_per_prompt, | |
): | |
image = image.to(device=device) | |
image_latents = self.vae.encode(image).latent_dist.sample() | |
image_latents = image_latents * self.vae.config.scaling_factor | |
# Add frames dimension to image latents | |
image_latents = image_latents.unsqueeze(2) | |
# Append a position mask for each subsequent frame | |
# after the intial image latent frame | |
frame_position_mask = [] | |
for frame_idx in range(num_frames - 1): | |
scale = (frame_idx + 1) / (num_frames - 1) | |
frame_position_mask.append( | |
torch.ones_like(image_latents[:, :, :1]) * scale) | |
if frame_position_mask: | |
frame_position_mask = torch.cat(frame_position_mask, dim=2) | |
image_latents = torch.cat( | |
[image_latents, frame_position_mask], dim=2) | |
# duplicate image_latents for each generation per prompt, using mps friendly method | |
image_latents = image_latents.repeat(num_videos_per_prompt, 1, 1, 1, 1) | |
if self.do_classifier_free_guidance: | |
image_latents = torch.cat([image_latents] * 2) | |
return image_latents | |
# Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_synth.TextToVideoSDPipeline.prepare_latents | |
def prepare_latents( | |
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None | |
): | |
shape = ( | |
batch_size, | |
num_channels_latents, | |
num_frames, | |
height // self.vae_scale_factor, | |
width // self.vae_scale_factor, | |
) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor( | |
shape, generator=generator, device=device, dtype=dtype) | |
else: | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps | |
def get_timesteps(self, num_inference_steps, strength, device): | |
# get the original timestep using init_timestep | |
init_timestep = min( | |
int(num_inference_steps * strength), num_inference_steps) | |
t_start = max(num_inference_steps - init_timestep, 0) | |
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:] | |
if hasattr(self.scheduler, "set_begin_index"): | |
self.scheduler.set_begin_index(t_start * self.scheduler.order) | |
return timesteps, num_inference_steps - t_start | |
# Similar to image, we need to prepare the latents for the video. | |
def prepare_video_latents( | |
self, video, timestep, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None | |
): | |
video = video.to(device=device, dtype=dtype) | |
is_long = video.shape[2] > 16 | |
# change from (b, c, f, h, w) -> (b * f, c, w, h) | |
bsz, channel, frames, width, height = video.shape | |
video = video.permute(0, 2, 1, 3, 4).reshape( | |
bsz * frames, channel, width, height) | |
if video.shape[1] == 4: | |
init_latents = video | |
else: | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
elif isinstance(generator, list): | |
init_latents = [ | |
retrieve_latents(self.vae.encode( | |
video[i: i + 1]), generator=generator[i]) | |
for i in range(batch_size) | |
] | |
init_latents = torch.cat(init_latents, dim=0) | |
else: | |
if not is_long: | |
# 1 step encoding | |
init_latents = retrieve_latents( | |
self.vae.encode(video), generator=generator) | |
else: | |
# chunk by chunk encoding. for low-memory consumption. | |
video_list = torch.chunk( | |
video, video.shape[0] // 16, dim=0) | |
with torch.no_grad(): | |
init_latents = [] | |
for video_chunk in video_list: | |
video_chunk = retrieve_latents( | |
self.vae.encode(video_chunk), generator=generator) | |
init_latents.append(video_chunk) | |
init_latents = torch.cat(init_latents, dim=0) | |
# torch.cuda.empty_cache() | |
init_latents = self.vae.config.scaling_factor * init_latents | |
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: | |
raise ValueError( | |
f"Cannot duplicate `video` of batch size {init_latents.shape[0]} to {batch_size} text prompts." | |
) | |
else: | |
init_latents = torch.cat([init_latents], dim=0) | |
shape = init_latents.shape | |
noise = randn_tensor(shape, generator=generator, | |
device=device, dtype=dtype) | |
latents = self.scheduler.add_noise(init_latents, noise, timestep) | |
latents = latents[None, :].reshape( | |
(bsz, frames, latents.shape[1]) + latents.shape[2:]).permute(0, 2, 1, 3, 4) | |
return latents | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
# Now image can be either a single image or a list of images (when randomized blending is enalbled). | |
image: Union[List[PipelineImageInput], PipelineImageInput] = None, | |
video: Union[List[np.ndarray], torch.Tensor] = None, | |
strength: float = 0.97, | |
overlap_size: int = 0, | |
chunk_size: int = 38, | |
height: Optional[int] = 720, | |
width: Optional[int] = 1280, | |
target_fps: Optional[int] = 38, | |
num_frames: int = 38, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 9.0, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
eta: float = 0.0, | |
num_videos_per_prompt: Optional[int] = 1, | |
decode_chunk_size: Optional[int] = 1, | |
generator: Optional[Union[torch.Generator, | |
List[torch.Generator]]] = None, | |
latents: Optional[torch.Tensor] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
clip_skip: Optional[int] = 1, | |
): | |
r""" | |
The call function to the pipeline for image-to-video generation with [`I2VGenXLPipeline`]. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.Tensor`): | |
Image or images to guide image generation. If you provide a tensor, it needs to be compatible with | |
[`CLIPImageProcessor`](https://huggingface.co./lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json). | |
video (`List[np.ndarray]` or `torch.Tensor`): | |
Video to guide video enhancement. | |
strength (`float`, *optional*, defaults to 0.97): | |
Indicates extent to transform the reference `video`. Must be between 0 and 1. `image` is used as a | |
starting point and more noise is added the higher the `strength`. The number of denoising steps depends | |
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising | |
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 | |
essentially ignores `image`. | |
overlap_size (`int`, *optional*, defaults to 0): | |
This parameter is used in randomized blending, when it is enabled. | |
It defines the size of overlap between neighbouring chunks. | |
chunk_size (`int`, *optional*, defaults to 38): | |
This parameter is used in randomized blending, when it is enabled. | |
It defines the number of frames we will enhance during each chunk of randomized blending. | |
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The width in pixels of the generated image. | |
target_fps (`int`, *optional*): | |
Frames per second. The rate at which the generated images shall be exported to a video after | |
generation. This is also used as a "micro-condition" while generation. | |
num_frames (`int`, *optional*): | |
The number of video frames to generate. | |
num_inference_steps (`int`, *optional*): | |
The number of denoising steps. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
eta (`float`, *optional*): | |
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
num_videos_per_prompt (`int`, *optional*): | |
The number of images to generate per prompt. | |
decode_chunk_size (`int`, *optional*): | |
The number of frames to decode at a time. The higher the chunk size, the higher the temporal | |
consistency between frames, but also the higher the memory consumption. By default, the decoder will | |
decode all frames at once for maximal quality. Reduce `decode_chunk_size` to reduce memory usage. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
latents (`torch.Tensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
provided, text embeddings are generated from the `prompt` input argument. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
Examples: | |
Returns: | |
[`pipelines.i2vgen_xl.pipeline_i2vgen_xl.I2VGenXLPipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`pipelines.i2vgen_xl.pipeline_i2vgen_xl.I2VGenXLPipelineOutput`] is | |
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames. | |
""" | |
# 0. Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs(prompt, image, height, width, | |
negative_prompt, prompt_embeds, negative_prompt_embeds) | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
self._guidance_scale = guidance_scale | |
# 3.1 Encode input text prompt | |
prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
prompt, | |
device, | |
num_videos_per_prompt, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
clip_skip=clip_skip, | |
) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
if self.do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
# 3.2 Encode image prompt | |
# 3.2.1 Image encodings. | |
# https://github.com/ali-vilab/i2vgen-xl/blob/2539c9262ff8a2a22fa9daecbfd13f0a2dbc32d0/tools/inferences/inference_i2vgen_entrance.py#L114 | |
# As now we can have a list of images (when randomized blending), we encode each image separately as before. | |
image_embeddings_list = [] | |
for img in image: | |
cropped_image = _center_crop_wide(img, (width, width)) | |
cropped_image = _resize_bilinear( | |
cropped_image, (self.feature_extractor.crop_size["width"], | |
self.feature_extractor.crop_size["height"]) | |
) | |
image_embeddings = self._encode_image( | |
cropped_image, device, num_videos_per_prompt) | |
image_embeddings_list.append(image_embeddings) | |
# 3.2.2 Image latents. | |
# As now we can have a list of images (when randomized blending), we encode each image separately as before. | |
image_latents_list = [] | |
for img in image: | |
resized_image = _center_crop_wide(img, (width, height)) | |
img = self.video_processor.preprocess(resized_image).to( | |
device=device, dtype=image_embeddings_list[0].dtype) | |
image_latents = self.prepare_image_latents( | |
img, | |
device=device, | |
num_frames=num_frames, | |
num_videos_per_prompt=num_videos_per_prompt, | |
) | |
image_latents_list.append(image_latents) | |
# 3.3 Prepare additional conditions for the UNet. | |
if self.do_classifier_free_guidance: | |
fps_tensor = torch.tensor([target_fps, target_fps]).to(device) | |
else: | |
fps_tensor = torch.tensor([target_fps]).to(device) | |
fps_tensor = fps_tensor.repeat( | |
batch_size * num_videos_per_prompt, 1).ravel() | |
# 3.4 Preprocess video, similar to images. | |
video = self.video_processor.preprocess_video(video).to( | |
device=device, dtype=image_embeddings_list[0].dtype) | |
num_images_per_prompt = 1 | |
# 4. Prepare timesteps. This will be used for modified SDEdit approach. | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps, num_inference_steps = self.get_timesteps( | |
num_inference_steps, strength, device) | |
latent_timestep = timesteps[:1].repeat( | |
batch_size * num_images_per_prompt) | |
# 5. Prepare latent variables. Now we get latents for input video. | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_video_latents( | |
video, | |
latent_timestep, | |
batch_size * num_videos_per_prompt, | |
num_channels_latents, | |
num_frames, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 7. Denoising loop | |
num_warmup_steps = len(timesteps) - \ | |
num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
latents_denoised = torch.empty_like(latents) | |
CHUNK_START = 0 | |
# Each chunk must have a corresponding 1st frame | |
for idx in range(len(image_latents_list)): | |
latents_chunk = latents[:, :, | |
CHUNK_START:CHUNK_START + chunk_size] | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat( | |
[latents_chunk] * 2) if self.do_classifier_free_guidance else latents_chunk | |
latent_model_input = self.scheduler.scale_model_input( | |
latent_model_input, t) | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
fps=fps_tensor, | |
image_latents=image_latents_list[idx], | |
image_embeddings=image_embeddings_list[idx], | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if self.do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk( | |
2) | |
noise_pred = noise_pred_uncond + guidance_scale * \ | |
(noise_pred_text - noise_pred_uncond) | |
# reshape latents_chunk | |
batch_size, channel, frames, width, height = latents_chunk.shape | |
latents_chunk = latents_chunk.permute(0, 2, 1, 3, 4).reshape( | |
batch_size * frames, channel, width, height) | |
noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape( | |
batch_size * frames, channel, width, height) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents_chunk = self.scheduler.step( | |
noise_pred, t, latents_chunk, **extra_step_kwargs).prev_sample | |
# reshape latents back | |
latents_chunk = latents_chunk[None, :].reshape( | |
batch_size, frames, channel, width, height).permute(0, 2, 1, 3, 4) | |
# Make sure random_offset is set correctly. | |
if CHUNK_START == 0: | |
random_offset = 0 | |
else: | |
if overlap_size != 0: | |
random_offset = random.randint(0, overlap_size - 1) | |
else: | |
random_offset = 0 | |
# Apply Randomized Blending. | |
latents_denoised[:, :, CHUNK_START + random_offset:CHUNK_START + | |
chunk_size] = latents_chunk[:, :, random_offset:] | |
CHUNK_START += chunk_size - overlap_size | |
latents = latents_denoised | |
if CHUNK_START + overlap_size > latents_denoised.shape[2]: | |
raise NotImplementedError(f"Video of size={latents_denoised.shape[2]} is not dividable into chunks " | |
f"with size={chunk_size} and overlap={overlap_size}") | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
# 8. Post processing | |
if output_type == "latent": | |
video = latents | |
else: | |
video_tensor = self.decode_latents( | |
latents, decode_chunk_size=decode_chunk_size) | |
video = self.video_processor.postprocess_video( | |
video=video_tensor, output_type=output_type) | |
# 9. Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (video,) | |
return I2VGenXLPipelineOutput(frames=video) | |
# The following utilities are taken and adapted from | |
# https://github.com/ali-vilab/i2vgen-xl/blob/main/utils/transforms.py. | |
def _convert_pt_to_pil(image: Union[torch.Tensor, List[torch.Tensor]]): | |
if isinstance(image, list) and isinstance(image[0], torch.Tensor): | |
image = torch.cat(image, 0) | |
if isinstance(image, torch.Tensor): | |
if image.ndim == 3: | |
image = image.unsqueeze(0) | |
image_numpy = VaeImageProcessor.pt_to_numpy(image) | |
image_pil = VaeImageProcessor.numpy_to_pil(image_numpy) | |
image = image_pil | |
return image | |
def _resize_bilinear( | |
image: Union[torch.Tensor, List[torch.Tensor], PIL.Image.Image, List[PIL.Image.Image]], resolution: Tuple[int, int] | |
): | |
# First convert the images to PIL in case they are float tensors (only relevant for tests now). | |
image = _convert_pt_to_pil(image) | |
if isinstance(image, list): | |
image = [u.resize(resolution, PIL.Image.BILINEAR) for u in image] | |
else: | |
image = image.resize(resolution, PIL.Image.BILINEAR) | |
return image | |
def _center_crop_wide( | |
image: Union[torch.Tensor, List[torch.Tensor], PIL.Image.Image, List[PIL.Image.Image]], resolution: Tuple[int, int] | |
): | |
# First convert the images to PIL in case they are float tensors (only relevant for tests now). | |
image = _convert_pt_to_pil(image) | |
if isinstance(image, list): | |
scale = min(image[0].size[0] / resolution[0], | |
image[0].size[1] / resolution[1]) | |
image = [u.resize((round(u.width // scale), round(u.height // | |
scale)), resample=PIL.Image.BOX) for u in image] | |
# center crop | |
x1 = (image[0].width - resolution[0]) // 2 | |
y1 = (image[0].height - resolution[1]) // 2 | |
image = [u.crop((x1, y1, x1 + resolution[0], y1 + resolution[1])) | |
for u in image] | |
return image | |
else: | |
scale = min(image.size[0] / resolution[0], | |
image.size[1] / resolution[1]) | |
image = image.resize((round(image.width // scale), | |
round(image.height // scale)), resample=PIL.Image.BOX) | |
x1 = (image.width - resolution[0]) // 2 | |
y1 = (image.height - resolution[1]) // 2 | |
image = image.crop((x1, y1, x1 + resolution[0], y1 + resolution[1])) | |
return image | |