Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,952 Bytes
8fd2f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
from diffusers import DDPMScheduler, DiffusionPipeline
from typing import List, Any, Union, Type
from utils.loader import get_class
from copy import deepcopy
from modules.loader.module_loader_config import ModuleLoaderConfig
import torch
import pytorch_lightning as pl
import jsonargparse
class bcolors:
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKCYAN = '\033[96m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
class GenericModuleLoader():
def __init__(self,
pipeline_repo: str = None,
pipeline_obj: str = None,
set_prediction_type: str = "",
module_names: List[str] = [
"scheduler", "text_encoder", "tokenizer", "vae", "unet",],
module_config: dict[str,
Union[ModuleLoaderConfig, torch.nn.Module, Any]] = None,
fast_dev_run: Union[int, bool] = False,
root_cls: Type[Any] = None,
) -> None:
self.module_config = module_config
self.pipeline_repo = pipeline_repo
self.pipeline_obj = pipeline_obj
self.set_prediction_type = set_prediction_type
self.module_names = module_names
self.fast_dev_run = fast_dev_run
self.root_cls = root_cls
def load_custom_scheduler(self):
module_obj = DDPMScheduler.from_pretrained(
self.pipeline_repo, subfolder="scheduler")
if len(self.set_prediction_type) > 0:
scheduler_config = module_obj.load_config(
self.pipeline_repo, subfolder="scheduler")
scheduler_config["prediction_type"] = self.set_prediction_type
module_obj = module_obj.from_config(scheduler_config)
return module_obj
def load_pipeline(self):
return DiffusionPipeline.from_pretrained(self.pipeline_repo) if self.pipeline_repo is not None else None
def __call__(self, trainer: pl.LightningModule, diff_trainer_params):
# load diffusers pipeline object if set
if self.pipeline_obj is not None:
pipe = self.load_pipeline()
else:
pipe = None
if pipe is not None and self.pipeline_obj is not None:
# store the entire diffusers pipeline object under the name given by pipeline_obj
setattr(trainer, self.pipeline_obj, self.load_pipeline())
for module_name in self.module_names:
print(f" --- START: Loading module: {module_name} ---")
if module_name not in self.module_config.keys() and pipe is not None:
# stores models from already loaded diffusers pipeline
module_obj = getattr(pipe, module_name)
if module_name == "scheduler":
module_obj = self.load_custom_scheduler()
setattr(trainer, module_name, module_obj)
else:
if not isinstance(self.module_config[module_name], ModuleLoaderConfig):
# instantiate model by jsonargparse and store it
module = self.module_config[module_name]
# TODO we want to be able to load ckpt still.
config_obj = None
else:
# instantiate object from class method (as used by Diffusers, e.g. DiffusionPipeline.load_from_pretrained)
config_obj = self.module_config[module_name]
# retrieve loader class
loader_cls = get_class(
config_obj.loader_cls_path)
# retrieve loader method
if config_obj.cls_func != "":
# we allow to specify a method for fast loading (e.g. in diffusers, from_config instead of from_pretrained)
# makes loading faster for quick testing
if not self.fast_dev_run or config_obj.cls_func_fast_dev_run == "":
cls_func = getattr(
loader_cls, config_obj.cls_func)
else:
print(
f"Model {module_name}: loading fast_dev_run class loader")
cls_func = getattr(
loader_cls, config_obj.cls_func_fast_dev_run)
else:
cls_func = loader_cls
# retrieve parameters
# load parameters specified in diff_trainer_params (so it links them)
kwargs_trainer_params = config_obj.kwargs_diff_trainer_params
kwargs_diffusers = config_obj.kwargs_diffusers
# names of dependent modules that we need as input
dependent_modules = config_obj.dependent_modules
# names of dependent modules that we need as input. Modules will be cloned
dependent_modules_cloned = config_obj.dependent_modules_cloned
# model kwargs. Can be just a dict, or a parameter class (derived from modules.params.params_mixin.AsDictMixin) so we have verification of inputs
model_params = config_obj.model_params
# kwargs used only if on fast_dev_run mode
model_params_fast_dev_run = config_obj.model_params_fast_dev_run
if model_params is not None:
if isinstance(model_params, dict):
model_dict = model_params
else:
model_dict = model_params.to_dict()
else:
model_dict = {}
if (model_params_fast_dev_run is None) or (not self.fast_dev_run):
model_params_fast_dev_run = {}
else:
print(
f"Module {module_name}: loading fast_dev_run params")
loaded_modules_dict = {}
if dependent_modules is not None:
for key, dependent_module in dependent_modules.items():
assert hasattr(
trainer, dependent_module), f"Module {dependent_module} not available. Set {dependent_module} before module {module_name} in module_loader.module_names. Current order: {self.module_names}"
loaded_modules_dict[key] = getattr(
trainer, dependent_module)
if dependent_modules_cloned is not None:
for key, dependent_module in dependent_modules_cloned.items():
assert hasattr(
trainer, dependent_module), f"Module {dependent_module} not available. Set {dependent_module} before module {module_name} in module_loader.module_names. Current order: {self.module_names}"
loaded_modules_dict[key] = getattr(
trainer, deepcopy(dependent_module))
if kwargs_trainer_params is not None:
for key, param in kwargs_trainer_params.items():
if param is not None:
kwargs_trainer_params[key] = getattr(
diff_trainer_params, param)
else:
kwargs_trainer_params[key] = diff_trainer_params
else:
kwargs_trainer_params = {}
if kwargs_diffusers is None:
kwargs_diffusers = {}
else:
for key, value in kwargs_diffusers.items():
if key == "torch_dtype":
if value == "torch.float16":
kwargs_diffusers[key] = torch.float16
kwargs = kwargs_diffusers | loaded_modules_dict | kwargs_trainer_params | model_dict | model_params_fast_dev_run
args = config_obj.args
# instantiate object
module = cls_func(*args, **kwargs)
module: torch.nn.Module
if self.root_cls is not None:
assert isinstance(module, self.root_cls)
if config_obj is not None and config_obj.state_dict_path != "" and not self.fast_dev_run:
# TODO extend loading to hf spaces
print(
f" * Loading checkpoint {config_obj.state_dict_path} - STARTED")
module_state_dict = torch.load(
config_obj.state_dict_path, map_location=torch.device("cpu"))
module_state_dict = module_state_dict["state_dict"]
if len(config_obj.state_dict_filters) > 0:
assert not config_obj.strict_loading
ckpt_params_dict = {}
for name, param in module.named_parameters(prefix=module_name):
for filter_str in config_obj.state_dict_filters:
filter_groups = filter_str.split("*")
has_all_parts = True
for filter_group in filter_groups:
has_all_parts = has_all_parts and filter_group in name
if has_all_parts:
validate_name = name
for filter_group in filter_groups:
if filter_group in validate_name:
shift = validate_name.index(
filter_group)
validate_name = validate_name[shift+len(
filter_group):]
else:
has_all_parts = False
break
if has_all_parts:
ckpt_params_dict[name[len(
module_name+"."):]] = param
else:
ckpt_params_dict = dict(filter(lambda x: x[0].startswith(
module_name), module_state_dict.items()))
ckpt_params_dict = {
k.split(module_name+".")[1]: v for (k, v) in ckpt_params_dict.items()}
if len(ckpt_params_dict) > 0:
miss, unex = module.load_state_dict(
ckpt_params_dict, strict=config_obj.strict_loading)
ckpt_params_dict = {}
assert len(
unex) == 0, f"Unexpected parameters in checkpoint: {unex}"
if len(miss) > 0:
print(
f"Checkpoint {config_obj.state_dict_path} is missing parameters for module {module_name}.")
print(miss)
print(
f" * Loading checkpoint {config_obj.state_dict_path} - FINISHED")
if isinstance(module, jsonargparse.Namespace) or isinstance(module, dict):
print(bcolors.WARNING +
f"Warning: Seems object {module_name} was not build correct." + bcolors.ENDC)
setattr(trainer, module_name, module)
print(f" --- FINSHED: Loading module: {module_name} ---")
|