Spaces:
Runtime error
Runtime error
import os | |
import wandb | |
from detectron2.utils import comm | |
from detectron2.utils.events import EventWriter, get_event_storage | |
def setup_wandb(cfg, args): | |
if comm.is_main_process(): | |
init_args = { | |
k.lower(): v | |
for k, v in cfg.WANDB.items() | |
if isinstance(k, str) and k not in ["config"] | |
} | |
# only include most related part to avoid too big table | |
# TODO: add configurable params to select which part of `cfg` should be saved in config | |
if "config_exclude_keys" in init_args: | |
init_args["config"] = cfg | |
init_args["config"]["cfg_file"] = args.config_file | |
else: | |
init_args["config"] = { | |
"model": cfg.MODEL, | |
"solver": cfg.SOLVER, | |
"cfg_file": args.config_file, | |
} | |
if ("name" not in init_args) or (init_args["name"] is None): | |
init_args["name"] = os.path.basename(args.config_file) | |
else: | |
init_args["name"] = init_args["name"] + '_' + os.path.basename(args.config_file) | |
wandb.init(**init_args) | |
class BaseRule(object): | |
def __call__(self, target): | |
return target | |
class IsIn(BaseRule): | |
def __init__(self, keyword: str): | |
self.keyword = keyword | |
def __call__(self, target): | |
return self.keyword in target | |
class Prefix(BaseRule): | |
def __init__(self, keyword: str): | |
self.keyword = keyword | |
def __call__(self, target): | |
return "/".join([self.keyword, target]) | |
class WandbWriter(EventWriter): | |
""" | |
Write all scalars to a tensorboard file. | |
""" | |
def __init__(self): | |
""" | |
Args: | |
log_dir (str): the directory to save the output events | |
kwargs: other arguments passed to `torch.utils.tensorboard.SummaryWriter(...)` | |
""" | |
self._last_write = -1 | |
self._group_rules = [ | |
(IsIn("/"), BaseRule()), | |
(IsIn("loss"), Prefix("train")), | |
] | |
def write(self): | |
storage = get_event_storage() | |
def _group_name(scalar_name): | |
for (rule, op) in self._group_rules: | |
if rule(scalar_name): | |
return op(scalar_name) | |
return scalar_name | |
stats = { | |
_group_name(name): scalars[0] | |
for name, scalars in storage.latest().items() | |
if scalars[1] > self._last_write | |
} | |
if len(stats) > 0: | |
self._last_write = max([v[1] for k, v in storage.latest().items()]) | |
# storage.put_{image,histogram} is only meant to be used by | |
# tensorboard writer. So we access its internal fields directly from here. | |
if len(storage._vis_data) >= 1: | |
stats["image"] = [ | |
wandb.Image(img, caption=img_name) | |
for img_name, img, step_num in storage._vis_data | |
] | |
# Storage stores all image data and rely on this writer to clear them. | |
# As a result it assumes only one writer will use its image data. | |
# An alternative design is to let storage store limited recent | |
# data (e.g. only the most recent image) that all writers can access. | |
# In that case a writer may not see all image data if its period is long. | |
storage.clear_images() | |
if len(storage._histograms) >= 1: | |
def create_bar(tag, bucket_limits, bucket_counts, **kwargs): | |
data = [ | |
[label, val] for (label, val) in zip(bucket_limits, bucket_counts) | |
] | |
table = wandb.Table(data=data, columns=["label", "value"]) | |
return wandb.plot.bar(table, "label", "value", title=tag) | |
stats["hist"] = [create_bar(**params) for params in storage._histograms] | |
storage.clear_histograms() | |
if len(stats) == 0: | |
return | |
wandb.log(stats, step=storage.iter) | |
def close(self): | |
wandb.finish() |