Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import torch | |
from diffusers import AutoencoderKL, TCDScheduler | |
from diffusers.models.model_loading_utils import load_state_dict | |
from gradio_imageslider import ImageSlider | |
from huggingface_hub import hf_hub_download | |
from controlnet_union import ControlNetModel_Union | |
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline | |
MODELS = { | |
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning", | |
} | |
config_file = hf_hub_download( | |
"xinsir/controlnet-union-sdxl-1.0", | |
filename="config_promax.json", | |
) | |
config = ControlNetModel_Union.load_config(config_file) | |
controlnet_model = ControlNetModel_Union.from_config(config) | |
model_file = hf_hub_download( | |
"xinsir/controlnet-union-sdxl-1.0", | |
filename="diffusion_pytorch_model_promax.safetensors", | |
) | |
state_dict = load_state_dict(model_file) | |
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model( | |
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0" | |
) | |
model.to(device="cuda", dtype=torch.float16) | |
vae = AutoencoderKL.from_pretrained( | |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 | |
).to("cuda") | |
pipe = StableDiffusionXLFillPipeline.from_pretrained( | |
"SG161222/RealVisXL_V5.0_Lightning", | |
torch_dtype=torch.float16, | |
vae=vae, | |
controlnet=model, | |
variant="fp16", | |
).to("cuda") | |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) | |
def fill_image(prompt, image, model_selection, paste_back): | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = pipe.encode_prompt(prompt, "cuda", True) | |
source = image["background"] | |
mask = image["layers"][0] | |
alpha_channel = mask.split()[3] | |
binary_mask = alpha_channel.point(lambda p: p > 0 and 255) | |
cnet_image = source.copy() | |
cnet_image.paste(0, (0, 0), binary_mask) | |
for image in pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
image=cnet_image, | |
): | |
yield image, cnet_image | |
print(f"{model_selection=}") | |
print(f"{paste_back=}") | |
if paste_back: | |
image = image.convert("RGBA") | |
cnet_image.paste(image, (0, 0), binary_mask) | |
else: | |
cnet_image = image | |
yield source, cnet_image | |
def clear_result(): | |
return gr.update(value=None) | |
title = """<h1 align="center">Diffusers Fast Inpaint</h1> | |
<div align="center">Draw the mask over the subject you want to erase or change and write what you want to inpaint it with.</div> | |
<div align="center">This is a lighting model with almost no CFG and 12 steps, so don't expect high quality generations.</div> | |
<div align="center">This space is a PoC made for the guide <a href='https://huggingface.co./blog/OzzyGT/diffusers-image-fill'>Diffusers Image Fill</a>.</div> | |
""" | |
with gr.Blocks() as demo: | |
gr.HTML(title) | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox( | |
label="Prompt", | |
info="Describe what to inpaint the mask with", | |
lines=3, | |
) | |
with gr.Column(): | |
model_selection = gr.Dropdown( | |
choices=list(MODELS.keys()), | |
value="RealVisXL V5.0 Lightning", | |
label="Model", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
run_button = gr.Button("Generate") | |
with gr.Column(): | |
paste_back = gr.Checkbox(True, label="Paste back original") | |
with gr.Row(): | |
input_image = gr.ImageMask( | |
type="pil", label="Input Image", crop_size=(1024, 1024), layers=False | |
) | |
result = ImageSlider( | |
interactive=False, | |
label="Generated Image", | |
) | |
use_as_input_button = gr.Button("Use as Input Image", visible=False) | |
def use_output_as_input(output_image): | |
return gr.update(value=output_image[1]) | |
use_as_input_button.click( | |
fn=use_output_as_input, inputs=[result], outputs=[input_image] | |
) | |
run_button.click( | |
fn=clear_result, | |
inputs=None, | |
outputs=result, | |
).then( | |
fn=lambda: gr.update(visible=False), | |
inputs=None, | |
outputs=use_as_input_button, | |
).then( | |
fn=fill_image, | |
inputs=[prompt, input_image, model_selection, paste_back], | |
outputs=result, | |
).then( | |
fn=lambda: gr.update(visible=True), | |
inputs=None, | |
outputs=use_as_input_button, | |
) | |
prompt.submit( | |
fn=clear_result, | |
inputs=None, | |
outputs=result, | |
).then( | |
fn=lambda: gr.update(visible=False), | |
inputs=None, | |
outputs=use_as_input_button, | |
).then( | |
fn=fill_image, | |
inputs=[prompt, input_image, model_selection, paste_back], | |
outputs=result, | |
).then( | |
fn=lambda: gr.update(visible=True), | |
inputs=None, | |
outputs=use_as_input_button, | |
) | |
demo.queue(max_size=12).launch(share=False) | |