import os import base64 import requests from PIL import Image from io import BytesIO import gradio as gr hf_token = os.environ.get('hf_token') API_URL = os.environ.get('api_url') headers = { "Accept" : "application/json", "Authorization": f"Bearer {hf_token}", "Content-Type": "application/json" } # helper to decode input image def decode_base64_image(image_string): base64_image = base64.b64decode(image_string) buffer = BytesIO(base64_image) image = Image.open(buffer) return image def predict(prompt, temperature, guidance_scale, num_inference_steps, seed): payload = { "inputs": prompt, "temperature": temperature, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps, "seed": seed } response = requests.post(API_URL, headers=headers, json=payload) output = response.json() image = decode_base64_image(image_string=output) return image demo = gr.Interface( predict, inputs=[ gr.Textbox(label='Prompt'), gr.Slider(0.1, 5.0, label='Temperature', step=0.1, value=1.0), gr.Slider(0.1, 15.0, label='Guidance Scale', step=0.1, value=7.5), gr.Slider(1, 100, label='Number of inference steps', step=1, value=50), gr.Slider(1, 100, label='Seed', step=1, value=42), ], outputs="image", title="Android toy SDXL demo", description="Generate images with android toy!! Just specify an android toy somewhere in the prompt or click on the example provided below. The first run could take up to 3 minutes if the model is sleeping, then approximately 40 seconds per one request", examples=[["An android toy near Eiffel Tower", 1.0, 7.5, 50, 42], ["A blue android toy in snow near Eiffel Tower in winter", 1.0, 7.5, 50, 42], ["An android toy flying near Statue of Liberty", 1.0, 7.5, 50, 42]], cache_examples=True ) demo.launch()