Spaces:
Sleeping
Sleeping
import gradio as gr | |
import requests | |
import json | |
import plotly | |
def predict_fraud(selected_model, selected_interpretability_method, step, transaction_type, amount, oldbalanceOrg): | |
# Validation checks | |
if not selected_model: | |
return "Model Selection is required.", None, None, None, None, None, None, None, None, None, None | |
if not selected_interpretability_method: | |
return "Interpretability Technique is required.", None, None, None, None, None, None, None, None, None, None | |
if step == 0: # Assuming step is a numerical value, check for None explicitly | |
return "Step (Transaction Time) is required.", None, None, None, None, None, None, None, None, None, None | |
if not transaction_type: | |
return "Transaction Type is required.", None, None, None, None, None, None, None, None, None, None | |
if amount == 0: # Assuming amount is a numerical value, check for None explicitly | |
return "Transaction Amount is required.", None, None, None, None, None, None, None, None, None, None | |
if oldbalanceOrg is None: # Assuming oldbalanceOrg is a numerical value, check for None explicitly | |
return "Old Balance Org is required.", None, None, None, None, None, None, None, None, None, None | |
#url = "https://fraud-sense-16a8ed5f96b5.herokuapp.com/predict_and_explain" | |
#url = "https://fraudsense-02168c9829aa.herokuapp.com/predict_and_explain" | |
url = "https://xaifraudsense-48ebac2f952e.herokuapp.com/predict_and_explain" | |
data = { | |
'selected_model': selected_model, | |
'selected_interpretability_method': selected_interpretability_method, | |
'step': step, | |
'transaction_type': transaction_type, | |
'amount': amount, | |
'oldbalanceOrg': oldbalanceOrg | |
} | |
response = requests.post(url, json=data) | |
if response.status_code == 200: | |
result = response.json() | |
# Directly use the base64-encoded image string for the network graph | |
network_graph = result['network_graph'] | |
# Ensure other data is handled correctly | |
prediction_text = result['prediction_text'] | |
model_explanation = result['model_explanation'] | |
mod_plot_json = result['mod_plot'] | |
# Parse the JSON strings back into Plotly figures | |
mod_plot = plotly.graph_objs.Figure(json.loads(mod_plot_json)) | |
features_influence = result['features_influence'] | |
network_graph_json = result['network_graph'] #graph_objects | |
# Parse the JSON strings back into Plotly figures | |
network_graph = plotly.graph_objs.Figure(json.loads(network_graph_json)) | |
network_explainer = result['network_explainer'] | |
top_main_effect = result['top_main_effect'] | |
top_interaction = result['top_interaction'] | |
# Parse the JSON strings back into Plotly figures | |
radial_plot_json = result['radial_plot'] | |
bar_chart_json = result['bar_chart'] | |
radial_plot = plotly.graph_objs.Figure(json.loads(radial_plot_json)) | |
bar_chart = plotly.graph_objs.Figure(json.loads(bar_chart_json)) | |
narrative = result.get('narrative', "") | |
# Return the results | |
return prediction_text, model_explanation, mod_plot, features_influence, network_graph, network_explainer, top_main_effect, top_interaction,radial_plot, bar_chart, narrative | |
else: | |
# Handle error scenario by returning placeholders for each expected output | |
return "Error: " + response.text, None, None, None, None,None, None, None, None, None, None | |
# Define your Gradio interface here | |
with gr.Blocks() as app: | |
gr.Markdown("<h2 style='text-align: center; font-weight: bold;'>FraudSenseXAI - Advanced Fraud Detection</h2>") | |
gr.Markdown("<p style='text-align: center;'>Predict and analyze fraudulent transactions.</p>", elem_id="description") | |
gr.Markdown("<p style='text-align: center;'>This app utilizes financial synthetic dataset from kaggle, and it is structured to adapt to the nature of the dataset .</p>", elem_id="description") | |
error_message = gr.Textbox(label="Error Message", visible=False, lines=2, interactive=False) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("#### INPUT PARAMETERS: All fields are required") | |
model_selection = gr.Dropdown(choices=['Random Forest', 'Gradient Boost', 'Neural Network'], label="Model Selection") | |
interpretability_selection = gr.Dropdown(choices=['LIME', 'SHAP'], label="Interpretability Technique") | |
step = gr.Number(label="Step(Transaction Time)") | |
transaction_type = gr.Dropdown(choices=['Transfer', 'Payment', 'Cash Out', 'Cash In'], label="Transaction Type") | |
transaction_amount = gr.Number(label="Transaction Amount:") | |
old_balance_org = gr.Number(label="Old Balance: total account balance prior to transaction initiation ") | |
submit_btn = gr.Button("Analyze") | |
# Define outputs | |
gr.Markdown("#### PREDICTION RESULT") | |
prediction_text = gr.Textbox(label="Prediction", lines=7) | |
with gr.Column(): | |
gr.Markdown("#### MODEL INTERPRETATIONS") | |
model_explanation = gr.Textbox(label="Model Explanation", lines=7) | |
mod_plot = gr.Plot(label="Model Plot") | |
features_influence = gr.Textbox(label="Features Influence", lines=7) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("#### FEATURE INTERACTIONS: Note that this function only supports SHAP. LIME & Neural Network are not supported") | |
network_graph = gr.Plot(label="Network Graph") | |
network_explainer = gr.Text(label="Network Graph Explanation") | |
top_main_effect = gr.Text(label="Top Main Effect", lines=7) | |
top_interaction = gr.Text(label="Top Interaction", lines=7) | |
with gr.Column(): | |
gr.Markdown("#### COUNTERFACTUAL EXPLANATIONS") | |
radial_plot = gr.Plot(label="Radial Plot") | |
bar_chart = gr.Plot(label="Bar Chart") | |
narrative = gr.Textbox(label="Narrative") | |
def update_error_message(error_text, *rest): | |
if error_text and not error_text.startswith("Error: "): | |
error_message.update(value=error_text, visible=True) | |
return (None,) * len(rest) # Update to match the number of outputs minus the error message | |
else: | |
error_message.update(visible=False) | |
return (error_text,) + rest | |
submit_btn.click( | |
predict_fraud, | |
inputs=[model_selection, interpretability_selection, step, transaction_type, transaction_amount, old_balance_org], | |
outputs=[prediction_text, model_explanation, mod_plot, features_influence, network_graph, network_explainer, top_main_effect, top_interaction,radial_plot, bar_chart, narrative] | |
) | |
app.launch(share=True) | |