Fraudsense-v1 / app.py
Othniel74's picture
Update app.py
914085c verified
import gradio as gr
import requests
import json
import plotly
def predict_fraud(selected_model, selected_interpretability_method, step, transaction_type, amount, oldbalanceOrg):
# Validation checks
if not selected_model:
return "Model Selection is required.", None, None, None, None, None, None, None, None, None, None
if not selected_interpretability_method:
return "Interpretability Technique is required.", None, None, None, None, None, None, None, None, None, None
if step == 0: # Assuming step is a numerical value, check for None explicitly
return "Step (Transaction Time) is required.", None, None, None, None, None, None, None, None, None, None
if not transaction_type:
return "Transaction Type is required.", None, None, None, None, None, None, None, None, None, None
if amount == 0: # Assuming amount is a numerical value, check for None explicitly
return "Transaction Amount is required.", None, None, None, None, None, None, None, None, None, None
if oldbalanceOrg is None: # Assuming oldbalanceOrg is a numerical value, check for None explicitly
return "Old Balance Org is required.", None, None, None, None, None, None, None, None, None, None
#url = "https://fraud-sense-16a8ed5f96b5.herokuapp.com/predict_and_explain"
#url = "https://fraudsense-02168c9829aa.herokuapp.com/predict_and_explain"
url = "https://xaifraudsense-48ebac2f952e.herokuapp.com/predict_and_explain"
data = {
'selected_model': selected_model,
'selected_interpretability_method': selected_interpretability_method,
'step': step,
'transaction_type': transaction_type,
'amount': amount,
'oldbalanceOrg': oldbalanceOrg
}
response = requests.post(url, json=data)
if response.status_code == 200:
result = response.json()
# Directly use the base64-encoded image string for the network graph
network_graph = result['network_graph']
# Ensure other data is handled correctly
prediction_text = result['prediction_text']
model_explanation = result['model_explanation']
mod_plot_json = result['mod_plot']
# Parse the JSON strings back into Plotly figures
mod_plot = plotly.graph_objs.Figure(json.loads(mod_plot_json))
features_influence = result['features_influence']
network_graph_json = result['network_graph'] #graph_objects
# Parse the JSON strings back into Plotly figures
network_graph = plotly.graph_objs.Figure(json.loads(network_graph_json))
network_explainer = result['network_explainer']
top_main_effect = result['top_main_effect']
top_interaction = result['top_interaction']
# Parse the JSON strings back into Plotly figures
radial_plot_json = result['radial_plot']
bar_chart_json = result['bar_chart']
radial_plot = plotly.graph_objs.Figure(json.loads(radial_plot_json))
bar_chart = plotly.graph_objs.Figure(json.loads(bar_chart_json))
narrative = result.get('narrative', "")
# Return the results
return prediction_text, model_explanation, mod_plot, features_influence, network_graph, network_explainer, top_main_effect, top_interaction,radial_plot, bar_chart, narrative
else:
# Handle error scenario by returning placeholders for each expected output
return "Error: " + response.text, None, None, None, None,None, None, None, None, None, None
# Define your Gradio interface here
with gr.Blocks() as app:
gr.Markdown("<h2 style='text-align: center; font-weight: bold;'>FraudSenseXAI - Advanced Fraud Detection</h2>")
gr.Markdown("<p style='text-align: center;'>Predict and analyze fraudulent transactions.</p>", elem_id="description")
gr.Markdown("<p style='text-align: center;'>This app utilizes financial synthetic dataset from kaggle, and it is structured to adapt to the nature of the dataset .</p>", elem_id="description")
error_message = gr.Textbox(label="Error Message", visible=False, lines=2, interactive=False)
with gr.Row():
with gr.Column():
gr.Markdown("#### INPUT PARAMETERS: All fields are required")
model_selection = gr.Dropdown(choices=['Random Forest', 'Gradient Boost', 'Neural Network'], label="Model Selection")
interpretability_selection = gr.Dropdown(choices=['LIME', 'SHAP'], label="Interpretability Technique")
step = gr.Number(label="Step(Transaction Time)")
transaction_type = gr.Dropdown(choices=['Transfer', 'Payment', 'Cash Out', 'Cash In'], label="Transaction Type")
transaction_amount = gr.Number(label="Transaction Amount:")
old_balance_org = gr.Number(label="Old Balance: total account balance prior to transaction initiation ")
submit_btn = gr.Button("Analyze")
# Define outputs
gr.Markdown("#### PREDICTION RESULT")
prediction_text = gr.Textbox(label="Prediction", lines=7)
with gr.Column():
gr.Markdown("#### MODEL INTERPRETATIONS")
model_explanation = gr.Textbox(label="Model Explanation", lines=7)
mod_plot = gr.Plot(label="Model Plot")
features_influence = gr.Textbox(label="Features Influence", lines=7)
with gr.Row():
with gr.Column():
gr.Markdown("#### FEATURE INTERACTIONS: Note that this function only supports SHAP. LIME & Neural Network are not supported")
network_graph = gr.Plot(label="Network Graph")
network_explainer = gr.Text(label="Network Graph Explanation")
top_main_effect = gr.Text(label="Top Main Effect", lines=7)
top_interaction = gr.Text(label="Top Interaction", lines=7)
with gr.Column():
gr.Markdown("#### COUNTERFACTUAL EXPLANATIONS")
radial_plot = gr.Plot(label="Radial Plot")
bar_chart = gr.Plot(label="Bar Chart")
narrative = gr.Textbox(label="Narrative")
def update_error_message(error_text, *rest):
if error_text and not error_text.startswith("Error: "):
error_message.update(value=error_text, visible=True)
return (None,) * len(rest) # Update to match the number of outputs minus the error message
else:
error_message.update(visible=False)
return (error_text,) + rest
submit_btn.click(
predict_fraud,
inputs=[model_selection, interpretability_selection, step, transaction_type, transaction_amount, old_balance_org],
outputs=[prediction_text, model_explanation, mod_plot, features_influence, network_graph, network_explainer, top_main_effect, top_interaction,radial_plot, bar_chart, narrative]
)
app.launch(share=True)