OsBaran commited on
Commit
e7ac5fa
·
1 Parent(s): c9670f4

Add application

Browse files
Files changed (1) hide show
  1. app.py +16 -13
app.py CHANGED
@@ -1,6 +1,18 @@
1
  import gradio as gr
2
  from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
3
-
 
 
 
 
 
 
 
 
 
 
 
 
4
  # Buraya İngilizce modelinizi yazın
5
  model = AutoModelForSequenceClassification.from_pretrained("OsBaran/Roberta-Classification-Model")
6
  tokenizer = AutoTokenizer.from_pretrained("roberta-base")
@@ -40,10 +52,7 @@ def explain_roberta_prediction(model, tokenizer, input_text):
40
  explanation += "Modelin kararı aşağıdaki anahtar kelimelere dayanıyor:\n" + ', '.join(important_tokens)
41
 
42
  return explanation
43
- import shap
44
- from transformers import (AutoTokenizer,
45
- AutoModelForSequenceClassification,
46
- TextClassificationPipeline)
47
  pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True, device=device)
48
  def score_and_visualize(text):
49
  prediction = pipe([text])
@@ -52,13 +61,7 @@ def score_and_visualize(text):
52
  explainer = shap.Explainer(pipe)
53
  shap_values = explainer([text])
54
  shap.plots.text(shap_values)
55
- import requests
56
- import re
57
- from collections import Counter
58
- from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS
59
- from bs4 import BeautifulSoup
60
- from sklearn.feature_extraction.text import TfidfVectorizer
61
- from sklearn.metrics.pairwise import cosine_similarity
62
  api_key = '764e3b45715b449a8aedb8cd8018dfed'
63
  def fetch_news_from_api(api_key, query, page_size=100):
64
  url = f'https://newsapi.org/v2/everything?q={query}&pageSize={page_size}&apiKey={api_key}'
@@ -87,7 +90,7 @@ def extract_keywords(text, top_n=5):
87
 
88
  return [keyword for keyword, _ in most_common_keywords]
89
 
90
- from keybert import KeyBERT
91
 
92
  kw_model = KeyBERT('all-mpnet-base-v2') # SBERT kullanarak modeli yükleyin
93
 
 
1
  import gradio as gr
2
  from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
3
+ import shap
4
+ from transformers import (AutoTokenizer,
5
+ AutoModelForSequenceClassification,
6
+ TextClassificationPipeline)
7
+ import requests
8
+ import re
9
+ from collections import Counter
10
+ from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS
11
+ from bs4 import BeautifulSoup
12
+ from sklearn.feature_extraction.text import TfidfVectorizer
13
+ from sklearn.metrics.pairwise import cosine_similarity
14
+ from keybert import KeyBERT
15
+ import torch
16
  # Buraya İngilizce modelinizi yazın
17
  model = AutoModelForSequenceClassification.from_pretrained("OsBaran/Roberta-Classification-Model")
18
  tokenizer = AutoTokenizer.from_pretrained("roberta-base")
 
52
  explanation += "Modelin kararı aşağıdaki anahtar kelimelere dayanıyor:\n" + ', '.join(important_tokens)
53
 
54
  return explanation
55
+
 
 
 
56
  pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True, device=device)
57
  def score_and_visualize(text):
58
  prediction = pipe([text])
 
61
  explainer = shap.Explainer(pipe)
62
  shap_values = explainer([text])
63
  shap.plots.text(shap_values)
64
+
 
 
 
 
 
 
65
  api_key = '764e3b45715b449a8aedb8cd8018dfed'
66
  def fetch_news_from_api(api_key, query, page_size=100):
67
  url = f'https://newsapi.org/v2/everything?q={query}&pageSize={page_size}&apiKey={api_key}'
 
90
 
91
  return [keyword for keyword, _ in most_common_keywords]
92
 
93
+
94
 
95
  kw_model = KeyBERT('all-mpnet-base-v2') # SBERT kullanarak modeli yükleyin
96