import os import shutil import torch import gradio as gr from huggingface_hub import HfApi, whoami, ModelCard, model_info from gradio_huggingfacehub_search import HuggingfaceHubSearch from textwrap import dedent from pathlib import Path from tempfile import TemporaryDirectory from huggingface_hub.file_download import repo_folder_name from optimum.intel.utils.constant import _TASK_ALIASES from optimum.exporters import TasksManager from optimum.intel.utils.modeling_utils import _find_files_matching_pattern from optimum.intel import ( OVModelForAudioClassification, OVModelForCausalLM, OVModelForFeatureExtraction, OVModelForImageClassification, OVModelForMaskedLM, OVModelForQuestionAnswering, OVModelForSeq2SeqLM, OVModelForSequenceClassification, OVModelForTokenClassification, OVModelForPix2Struct, OVWeightQuantizationConfig, OVDiffusionPipeline, ) from diffusers import ConfigMixin _HEAD_TO_AUTOMODELS = { "feature-extraction": "OVModelForFeatureExtraction", "fill-mask": "OVModelForMaskedLM", "text-generation": "OVModelForCausalLM", "text-classification": "OVModelForSequenceClassification", "token-classification": "OVModelForTokenClassification", "question-answering": "OVModelForQuestionAnswering", "image-classification": "OVModelForImageClassification", "audio-classification": "OVModelForAudioClassification", } def export(model_id: str, private_repo: bool, overwritte: bool, oauth_token: gr.OAuthToken): if oauth_token.token is None: return "You must be logged in to use this space" if not model_id: return f"### Invalid input 🐞 Please specify a model name, got {model_id}" try: model_name = model_id.split("/")[-1] username = whoami(oauth_token.token)["name"] new_repo_id = f"{username}/{model_name}-openvino" library_name = TasksManager.infer_library_from_model(model_id, token=oauth_token.token) if library_name == "diffusers": auto_model_class = "OVDiffusionPipeline" elif library_name == "transformers": task = TasksManager.infer_task_from_model(model_id, token=oauth_token.token) if task == "text2text-generation": return "Export of Seq2Seq models is currently disabled" if task not in _HEAD_TO_AUTOMODELS: return f"The task '{task}' is not supported, only {_HEAD_TO_AUTOMODELS.keys()} tasks are supported" auto_model_class = _HEAD_TO_AUTOMODELS[task] else: # TODO: add sentence-transformers and timm support in space return f"Library {library_name} not yet supported" ov_files = _find_files_matching_pattern( model_id, pattern=r"(.*)?openvino(.*)?\_model(.*)?.xml$", use_auth_token=oauth_token.token, ) if len(ov_files) > 0: return f"Model {model_id} is already converted, skipping.." api = HfApi(token=oauth_token.token) if api.repo_exists(new_repo_id) and not overwritte: return f"Model {new_repo_id} already exist, please tick the overwritte box to push on an existing repository" with TemporaryDirectory() as d: folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models")) os.makedirs(folder) try: api.snapshot_download(repo_id=model_id, local_dir=folder, allow_patterns=["*.json"]) ov_model = eval(auto_model_class).from_pretrained(model_id, export=True, cache_dir=folder, token=oauth_token.token) ov_model.save_pretrained(folder) new_repo_url = api.create_repo(repo_id=new_repo_id, exist_ok=True, private=private_repo) new_repo_id = new_repo_url.repo_id print("Repository created successfully!", new_repo_url) folder = Path(folder) for dir_name in ( "", "vae_encoder", "vae_decoder", "text_encoder", "text_encoder_2", "unet", "tokenizer", "tokenizer_2", "scheduler", "feature_extractor", ): if not (folder / dir_name).is_dir(): continue for file_path in (folder / dir_name).iterdir(): if file_path.is_file(): try: api.upload_file( path_or_fileobj=file_path, path_in_repo=os.path.join(dir_name, file_path.name), repo_id=new_repo_id, ) except Exception as e: return f"Error uploading file {file_path}: {e}" try: card = ModelCard.load(model_id, token=oauth_token.token) except: card = ModelCard("") if card.data.tags is None: card.data.tags = [] card.data.tags.append("openvino") card.data.tags.append("openvino-export") card.data.base_model = model_id pipeline_tag = getattr(model_info(model_id, token=oauth_token.token), "pipeline_tag", None) if pipeline_tag is not None: card.data.pipeline_tag = pipeline_tag card.text = dedent( f""" This model was converted to OpenVINO from [`{model_id}`](https://huggingface.co./{model_id}) using [optimum-intel](https://github.com/huggingface/optimum-intel) via the [export](https://huggingface.co./spaces/echarlaix/openvino-export) space. First make sure you have optimum-intel installed: ```bash pip install optimum[openvino] ``` To load your model you can do as follows: ```python from optimum.intel import {auto_model_class} model_id = "{new_repo_id}" model = {auto_model_class}.from_pretrained(model_id) ``` """ ) card_path = os.path.join(folder, "README.md") card.save(card_path) api.upload_file( path_or_fileobj=card_path, path_in_repo="README.md", repo_id=new_repo_id, ) return f"This model was successfully exported, find it under your repository {new_repo_url}" finally: shutil.rmtree(folder, ignore_errors=True) except Exception as e: return f"### Error: {e}" DESCRIPTION = """ This Space uses [Optimum Intel](https://huggingface.co./docs/optimum/main/en/intel/openvino/export) to automatically export a model from the Hub to the [OpenVINO IR format](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html). After conversion, a repository will be pushed under your namespace with the resulting model. The list of supported architectures can be found in the [documentation](https://huggingface.co./docs/optimum/main/en/intel/openvino/models). """ model_id = HuggingfaceHubSearch( label="Hub Model ID", placeholder="Search for model ID on the hub", search_type="model", ) private_repo = gr.Checkbox( value=False, label="Private repository", info="Create a private repository instead of a public one", ) overwritte = gr.Checkbox( value=False, label="Overwrite repository content", info="Enable pushing files on existing repositories, potentially overwriting existing files", ) interface = gr.Interface( fn=export, inputs=[ model_id, private_repo, overwritte, ], outputs=[ gr.Markdown(label="output"), ], title="Export your model to OpenVINO", description=DESCRIPTION, api_name=False, ) with gr.Blocks() as demo: gr.Markdown("You must be logged in to use this space") gr.LoginButton(min_width=250) interface.render() demo.launch()