Spaces:
Sleeping
Sleeping
epowell101
commited on
Commit
·
7e4120a
1
Parent(s):
c484c91
several imporvements
Browse files
app.py
CHANGED
@@ -10,9 +10,16 @@ required_columns = [
|
|
10 |
'Avg forward segment size', 'Avg backward segment size'
|
11 |
]
|
12 |
|
|
|
|
|
|
|
13 |
# Streamlit UI
|
14 |
st.title("NetFlow Log Comparison Tool")
|
15 |
-
st.write("Compare your NetFlow logs against Sigma rules or MITRE ATT&CK patterns using RAG.")
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Instructions for data upload
|
18 |
st.markdown("""
|
@@ -22,9 +29,17 @@ st.markdown("""
|
|
22 |
- You can upload **up to 5 rows** for analysis.
|
23 |
""")
|
24 |
|
25 |
-
# Display required schema for users
|
26 |
st.write("### Required NetFlow Schema:")
|
27 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# Step 1: File Upload
|
30 |
uploaded_file = st.file_uploader("Upload your NetFlow log sequence CSV file", type="csv")
|
@@ -34,7 +49,12 @@ hugging_face_api_token = st.text_input("Enter your Hugging Face API Token", type
|
|
34 |
if not hugging_face_api_token:
|
35 |
st.warning("Please provide a Hugging Face API Token to proceed.")
|
36 |
|
37 |
-
# Step 3:
|
|
|
|
|
|
|
|
|
|
|
38 |
if uploaded_file and hugging_face_api_token:
|
39 |
# Read and display the file using CSV module
|
40 |
csv_file = StringIO(uploaded_file.getvalue().decode("utf-8"))
|
@@ -54,8 +74,7 @@ if uploaded_file and hugging_face_api_token:
|
|
54 |
# Prepare data for Hugging Face API call
|
55 |
input_texts = [f"{row}" for row in csv_data] # Convert each row to a string for comparison
|
56 |
|
57 |
-
#
|
58 |
-
HUGGING_FACE_API_URL = "https://api-inference.huggingface.co/models/sentence-transformers/all-distilroberta-v1"
|
59 |
headers = {"Authorization": f"Bearer {hugging_face_api_token}"}
|
60 |
|
61 |
try:
|
@@ -66,7 +85,14 @@ if uploaded_file and hugging_face_api_token:
|
|
66 |
# Display the results
|
67 |
st.write("### Comparison Results")
|
68 |
comparison_results = response.json()
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
except requests.exceptions.RequestException as e:
|
72 |
st.error(f"Error calling Hugging Face API: {str(e)}")
|
@@ -84,7 +110,7 @@ st.write("We value your feedback. [Fill out our survey](https://docs.google.com/
|
|
84 |
# Footer
|
85 |
st.markdown("---")
|
86 |
st.write("This free site is maintained by DeepTempo.")
|
87 |
-
# st.image("Final_DeepTempo_logo.png", width=300) # Adjust the path and width as needed 'Final DeepTempo logo.png
|
88 |
st.write("[Visit DeepTempo.ai](https://deeptempo.ai)")
|
89 |
st.write("[Check out the underlying code on GitHub](https://github.com/deepsecoss)")
|
90 |
|
|
|
10 |
'Avg forward segment size', 'Avg backward segment size'
|
11 |
]
|
12 |
|
13 |
+
# Hugging Face API Settings
|
14 |
+
HUGGING_FACE_API_URL = "https://api-inference.huggingface.co/models/sentence-transformers/all-distilroberta-v1"
|
15 |
+
|
16 |
# Streamlit UI
|
17 |
st.title("NetFlow Log Comparison Tool")
|
18 |
+
st.write("Compare your NetFlow logs against Sigma rules or MITRE ATT&CK patterns using Retrieval-Augmented Generation (RAG).")
|
19 |
+
|
20 |
+
# Display the embedding model being used
|
21 |
+
st.write("### Embedding Model in Use")
|
22 |
+
st.write("The model used for embedding is: **All-DistilRoBERTa-V1**")
|
23 |
|
24 |
# Instructions for data upload
|
25 |
st.markdown("""
|
|
|
29 |
- You can upload **up to 5 rows** for analysis.
|
30 |
""")
|
31 |
|
32 |
+
# Display required schema for users with bullet points
|
33 |
st.write("### Required NetFlow Schema:")
|
34 |
+
st.markdown("""
|
35 |
+
- **Flow duration**
|
36 |
+
- **Source port**
|
37 |
+
- **Destination port**
|
38 |
+
- **Total forward packets**
|
39 |
+
- **Total backward packets**
|
40 |
+
- **Avg forward segment size**
|
41 |
+
- **Avg backward segment size**
|
42 |
+
""")
|
43 |
|
44 |
# Step 1: File Upload
|
45 |
uploaded_file = st.file_uploader("Upload your NetFlow log sequence CSV file", type="csv")
|
|
|
49 |
if not hugging_face_api_token:
|
50 |
st.warning("Please provide a Hugging Face API Token to proceed.")
|
51 |
|
52 |
+
# Step 3: Model and Comparison Options
|
53 |
+
st.write("### Model and Comparison Options")
|
54 |
+
llm_choice = st.selectbox("Select LLM", ["All-DistilRoBERTa-V1"]) # Add other models as necessary
|
55 |
+
comparison_choice = st.selectbox("Select Comparison Type", ["Mitre", "Sigma"])
|
56 |
+
|
57 |
+
# Step 4: Run Comparison if File Uploaded and Token Provided
|
58 |
if uploaded_file and hugging_face_api_token:
|
59 |
# Read and display the file using CSV module
|
60 |
csv_file = StringIO(uploaded_file.getvalue().decode("utf-8"))
|
|
|
74 |
# Prepare data for Hugging Face API call
|
75 |
input_texts = [f"{row}" for row in csv_data] # Convert each row to a string for comparison
|
76 |
|
77 |
+
# Call Hugging Face API
|
|
|
78 |
headers = {"Authorization": f"Bearer {hugging_face_api_token}"}
|
79 |
|
80 |
try:
|
|
|
85 |
# Display the results
|
86 |
st.write("### Comparison Results")
|
87 |
comparison_results = response.json()
|
88 |
+
|
89 |
+
# Sort and extract top 3 results for display
|
90 |
+
top_results = sorted(comparison_results, key=lambda x: x['score'], reverse=True)[:3]
|
91 |
+
|
92 |
+
# Display the top 3 results
|
93 |
+
for idx, result in enumerate(top_results):
|
94 |
+
st.write(f"**{idx + 1}.** Matched Sequence: `{result['sequence']}`")
|
95 |
+
st.write(f" - **Cosine Similarity Score**: {result['score']:.4f}")
|
96 |
|
97 |
except requests.exceptions.RequestException as e:
|
98 |
st.error(f"Error calling Hugging Face API: {str(e)}")
|
|
|
110 |
# Footer
|
111 |
st.markdown("---")
|
112 |
st.write("This free site is maintained by DeepTempo.")
|
113 |
+
# st.image("Final_DeepTempo_logo.png", width=300) # Adjust the path and width as needed 'Final DeepTempo logo.png'
|
114 |
st.write("[Visit DeepTempo.ai](https://deeptempo.ai)")
|
115 |
st.write("[Check out the underlying code on GitHub](https://github.com/deepsecoss)")
|
116 |
|