Spaces:
Runtime error
Runtime error
import copy | |
import os | |
import random | |
import urllib.request | |
import torch | |
import torch.nn.functional as FF | |
import torch.optim | |
from torchvision import utils | |
from tqdm import tqdm | |
from stylegan2.model import Generator | |
class DownloadProgressBar(tqdm): | |
def update_to(self, b=1, bsize=1, tsize=None): | |
if tsize is not None: | |
self.total = tsize | |
self.update(b * bsize - self.n) | |
def get_path(base_path): | |
BASE_DIR = os.path.join('checkpoints') | |
save_path = os.path.join(BASE_DIR, base_path) | |
if not os.path.exists(save_path): | |
url = f"https://huggingface.co./aaronb/StyleGAN2/resolve/main/{base_path}" | |
print(f'{base_path} not found') | |
print('Try to download from huggingface: ', url) | |
os.makedirs(os.path.dirname(save_path), exist_ok=True) | |
download_url(url, save_path) | |
print('Downloaded to ', save_path) | |
return save_path | |
def download_url(url, output_path): | |
with DownloadProgressBar(unit='B', unit_scale=True, | |
miniters=1, desc=url.split('/')[-1]) as t: | |
urllib.request.urlretrieve(url, filename=output_path, reporthook=t.update_to) | |
class CustomGenerator(Generator): | |
def prepare( | |
self, | |
styles, | |
inject_index=None, | |
truncation=1, | |
truncation_latent=None, | |
input_is_latent=False, | |
noise=None, | |
randomize_noise=True, | |
): | |
if not input_is_latent: | |
styles = [self.style(s) for s in styles] | |
if noise is None: | |
if randomize_noise: | |
noise = [None] * self.num_layers | |
else: | |
noise = [ | |
getattr(self.noises, f"noise_{i}") for i in range(self.num_layers) | |
] | |
if truncation < 1: | |
style_t = [] | |
for style in styles: | |
style_t.append( | |
truncation_latent + truncation * (style - truncation_latent) | |
) | |
styles = style_t | |
if len(styles) < 2: | |
inject_index = self.n_latent | |
if styles[0].ndim < 3: | |
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) | |
else: | |
latent = styles[0] | |
else: | |
if inject_index is None: | |
inject_index = random.randint(1, self.n_latent - 1) | |
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) | |
latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1) | |
latent = torch.cat([latent, latent2], 1) | |
return latent, noise | |
def generate( | |
self, | |
latent, | |
noise, | |
): | |
out = self.input(latent) | |
out = self.conv1(out, latent[:, 0], noise=noise[0]) | |
skip = self.to_rgb1(out, latent[:, 1]) | |
i = 1 | |
for conv1, conv2, noise1, noise2, to_rgb in zip( | |
self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs | |
): | |
out = conv1(out, latent[:, i], noise=noise1) | |
out = conv2(out, latent[:, i + 1], noise=noise2) | |
skip = to_rgb(out, latent[:, i + 2], skip) | |
if out.shape[-1] == 256: F = out | |
i += 2 | |
image = skip | |
F = FF.interpolate(F, image.shape[-2:], mode='bilinear') | |
return image, F | |
def stylegan2( | |
size=1024, | |
channel_multiplier=2, | |
latent=512, | |
n_mlp=8, | |
ckpt='stylegan2-ffhq-config-f.pt' | |
): | |
g_ema = CustomGenerator(size, latent, n_mlp, channel_multiplier=channel_multiplier) | |
checkpoint = torch.load(get_path(ckpt)) | |
g_ema.load_state_dict(checkpoint["g_ema"], strict=False) | |
g_ema.requires_grad_(False) | |
g_ema.eval() | |
return g_ema | |
def bilinear_interpolate_torch(im, y, x): | |
""" | |
im : B,C,H,W | |
y : 1,numPoints -- pixel location y float | |
x : 1,numPOints -- pixel location y float | |
""" | |
device = im.device | |
x0 = torch.floor(x).long().to(device) | |
x1 = x0 + 1 | |
y0 = torch.floor(y).long().to(device) | |
y1 = y0 + 1 | |
wa = ((x1.float() - x) * (y1.float() - y)).to(device) | |
wb = ((x1.float() - x) * (y - y0.float())).to(device) | |
wc = ((x - x0.float()) * (y1.float() - y)).to(device) | |
wd = ((x - x0.float()) * (y - y0.float())).to(device) | |
# Instead of clamp | |
x1 = x1 - torch.floor(x1 / im.shape[3]).int().to(device) | |
y1 = y1 - torch.floor(y1 / im.shape[2]).int().to(device) | |
Ia = im[:, :, y0, x0] | |
Ib = im[:, :, y1, x0] | |
Ic = im[:, :, y0, x1] | |
Id = im[:, :, y1, x1] | |
return Ia * wa + Ib * wb + Ic * wc + Id * wd | |
def drag_gan(g_ema, latent: torch.Tensor, noise, F, handle_points, target_points, mask, max_iters=1000): | |
handle_points0 = copy.deepcopy(handle_points) | |
n = len(handle_points) | |
r1, r2, lam, d = 3, 12, 20, 1 | |
def neighbor(x, y, d): | |
points = [] | |
for i in range(x - d, x + d): | |
for j in range(y - d, y + d): | |
points.append(torch.tensor([i, j]).float().to(latent.device)) | |
return points | |
F0 = F.detach().clone() | |
latent_trainable = latent[:, :6, :].detach().clone().requires_grad_(True) | |
latent_untrainable = latent[:, 6:, :].detach().clone().requires_grad_(False) | |
optimizer = torch.optim.Adam([latent_trainable], lr=2e-3) | |
for iter in range(max_iters): | |
for s in range(1): | |
optimizer.zero_grad() | |
latent = torch.cat([latent_trainable, latent_untrainable], dim=1) | |
sample2, F2 = g_ema.generate(latent, noise) | |
# motion supervision | |
loss = 0 | |
for i in range(n): | |
pi, ti = handle_points[i], target_points[i] | |
di = (ti - pi) / torch.sum((ti - pi)**2) | |
for qi in neighbor(int(pi[0]), int(pi[1]), r1): | |
# f1 = F[..., int(qi[0]), int(qi[1])] | |
# f2 = F2[..., int(qi[0] + di[0]), int(qi[1] + di[1])] | |
f1 = bilinear_interpolate_torch(F2, qi[0], qi[1]).detach() | |
f2 = bilinear_interpolate_torch(F2, qi[0] + di[0], qi[1] + di[1]) | |
loss += FF.l1_loss(f2, f1) | |
if mask is not None: | |
loss += ((F2 - F0) * (1 - mask)).abs().mean() * lam | |
loss.backward() | |
optimizer.step() | |
# point tracking | |
with torch.no_grad(): | |
sample2, F2 = g_ema.generate(latent, noise) | |
for i in range(n): | |
pi = handle_points0[i] | |
# f = F0[..., int(pi[0]), int(pi[1])] | |
f0 = bilinear_interpolate_torch(F0, pi[0], pi[1]) | |
minv = 1e9 | |
minx = 1e9 | |
miny = 1e9 | |
for qi in neighbor(int(handle_points[i][0]), int(handle_points[i][1]), r2): | |
# f2 = F2[..., int(qi[0]), int(qi[1])] | |
f2 = bilinear_interpolate_torch(F2, qi[0], qi[1]) | |
v = torch.norm(f2 - f0, p=1) | |
if v < minv: | |
minv = v | |
minx = int(qi[0]) | |
miny = int(qi[1]) | |
handle_points[i][0] = minx | |
handle_points[i][1] = miny | |
F = F2.detach().clone() | |
if iter % 1 == 0: | |
print(iter, loss.item(), handle_points, target_points) | |
# p = handle_points[0].int() | |
# sample2[0, :, p[0] - 5:p[0] + 5, p[1] - 5:p[1] + 5] = sample2[0, :, p[0] - 5:p[0] + 5, p[1] - 5:p[1] + 5] * 0 | |
# t = target_points[0].int() | |
# sample2[0, :, t[0] - 5:t[0] + 5, t[1] - 5:t[1] + 5] = sample2[0, :, t[0] - 5:t[0] + 5, t[1] - 5:t[1] + 5] * 255 | |
# sample2[0, :, 210, 134] = sample2[0, :, 210, 134] * 0 | |
# utils.save_image(sample2, "test2.png", normalize=True, range=(-1, 1)) | |
yield sample2, latent, F2, handle_points | |