Spaces:
Paused
Paused
import os | |
import re | |
import logging | |
import gradio as gr | |
import openai | |
print(os.environ) | |
openai.api_base = os.environ.get("OPENAI_API_BASE") | |
openai.api_key = os.environ.get("OPENAI_API_KEY") | |
BASE_SYSTEM_MESSAGE = """YOU ALWAYS FOLLOW INSTRUCTIONS WHEN GIVEN, YOU DO NOT GIVE MORE INFORMATION THAT WHAT YOU ARE ASKED UNLESS ITS IMPORTANT""" | |
def make_prediction(prompt, max_tokens=None, temperature=None, top_p=None, top_k=None, repetition_penalty=None): | |
completion = openai.Completion.create(model="Open-Orca/LlongOrca-13B-16k", prompt=prompt, max_tokens=max_tokens, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty, stream=True, stop=["</s>", "<|im_end|>"]) | |
for chunk in completion: | |
yield chunk["choices"][0]["text"] | |
def clear_chat(chat_history_state, chat_message): | |
chat_history_state = [] | |
chat_message = '' | |
return chat_history_state, chat_message | |
def user(message, history): | |
history = history or [] | |
# Append the user's message to the conversation history | |
history.append([message, ""]) | |
return "", history | |
def chat(history, system_message, max_tokens, temperature, top_p, top_k, repetition_penalty): | |
history = history or [] | |
messages = "<|im_start|>"+"system\n" + BASE_SYSTEM_MESSAGE + system_message.strip() + "<|im_end|>\n" + \ | |
"\n".join(["\n".join(["<|im_start|>"+"user\n"+item[0]+"<|im_end|>", "<|im_start|>assistant\n"+item[1]+"<|im_end|>"]) | |
for item in history]) | |
# strip the last `<|end_of_turn|>` from the messages | |
messages = messages.rstrip("<|im_end|>") | |
# remove last space from assistant, some models output a ZWSP if you leave a space | |
messages = messages.rstrip() | |
prediction = make_prediction( | |
messages, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k, | |
repetition_penalty=repetition_penalty, | |
) | |
for tokens in prediction: | |
tokens = re.findall(r'(.*?)(\s|$)', tokens) | |
for subtoken in tokens: | |
subtoken = "".join(subtoken) | |
answer = subtoken | |
history[-1][1] += answer | |
# stream the response | |
yield history, history, "" | |
start_message = "" | |
CSS =""" | |
.contain { display: flex; flex-direction: column; } | |
.gradio-container { height: 100vh !important; } | |
#component-0 { height: 100%; } | |
#chatbot { flex-grow: 1; overflow: auto; resize: vertical; } | |
""" | |
#with gr.Blocks() as demo: | |
with gr.Blocks(css=CSS) as demo: | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(f""" | |
## This demo is an unquantized GPU chatbot of [OpenOrca LlongOrca-13B-16k](https://huggingface.co./Open-Orca/LlongOrca-13B-16k) | |
Brought to you by your friends at Alignment Lab AI, OpenChat, and Open Access AI Collective! | |
""") | |
with gr.Row(): | |
gr.Markdown("# ๐ OpenOrca LlongOrca-13B-16k Playground Space! ๐") | |
with gr.Row(): | |
#chatbot = gr.Chatbot().style(height=500) | |
chatbot = gr.Chatbot(elem_id="chatbot") | |
with gr.Row(): | |
message = gr.Textbox( | |
label="What do you want to chat about?", | |
placeholder="Ask me anything.", | |
lines=3, | |
) | |
with gr.Row(): | |
submit = gr.Button(value="Send message", variant="secondary").style(full_width=True) | |
clear = gr.Button(value="New topic", variant="secondary").style(full_width=False) | |
stop = gr.Button(value="Stop", variant="secondary").style(full_width=False) | |
with gr.Accordion("Show Model Parameters", open=False): | |
with gr.Row(): | |
with gr.Column(): | |
max_tokens = gr.Slider(20, 1000, label="Max Tokens", step=20, value=500) | |
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=0.8) | |
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.95) | |
top_k = gr.Slider(0, 100, label="Top K", step=1, value=40) | |
repetition_penalty = gr.Slider(0.0, 2.0, label="Repetition Penalty", step=0.1, value=1.1) | |
system_msg = gr.Textbox( | |
start_message, label="System Message", interactive=True, visible=True, placeholder="System prompt. Provide instructions which you want the model to remember.", lines=5) | |
chat_history_state = gr.State() | |
clear.click(clear_chat, inputs=[chat_history_state, message], outputs=[chat_history_state, message], queue=False) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
submit_click_event = submit.click( | |
fn=user, inputs=[message, chat_history_state], outputs=[message, chat_history_state], queue=True | |
).then( | |
fn=chat, inputs=[chat_history_state, system_msg, max_tokens, temperature, top_p, top_k, repetition_penalty], outputs=[chatbot, chat_history_state, message], queue=True | |
) | |
stop.click(fn=None, inputs=None, outputs=None, cancels=[submit_click_event], queue=False) | |
demo.queue(max_size=128, concurrency_count=48).launch(debug=True, server_name="0.0.0.0", server_port=7860) | |