File size: 4,915 Bytes
6bcba58
 
 
 
 
 
 
 
 
 
5103369
6bcba58
 
54ac0bc
540c9f5
96ac3aa
6b02e11
6bcba58
 
 
6b02e11
 
0653671
6b02e11
 
 
 
454b0bf
 
8861375
1fc0a63
 
454b0bf
 
 
8861375
e17f0b6
 
 
 
 
 
 
 
 
 
 
 
 
 
6bcba58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5103369
6bcba58
e17f0b6
6bcba58
96ac3aa
e17f0b6
6bcba58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b02e11
 
6bcba58
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import gradio as gr
import os
import spaces
from transformers import GemmaTokenizer, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread

# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)


DESCRIPTION = '''
<div>
<h1 style="text-align: center;">Meta Llama3 8B</h1>
<p>This Space demonstrates the instruction-tuned model <a href="https://huggingface.co./meta-llama/Llama3-8b-chat"><b>Llama3 8b Chat</b></a> by Meta. Meta Llama3 is the new open LLM and comes in two sizes: 8b and 70b. Feel free to play with it, or duplicate to run privately!</p>
<p>🔎 For more details about the Llama3 release and how to use the model with <code>transformers</code>, take a look <a href="https://huggingface.co./blog/llama3">at our blog post</a>.</p>
<p>🦕 Looking for an even more powerful model? Check out the <a href="https://huggingface.co./chat/"><b>Hugging Chat</b></a> integration for Meta Llama 3 70b</p>
</div>
'''

LICENSE = """
<p/>

---
Built with Meta Llama 3
"""

PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/8e75e61cc9bab22b7ce3dec85ab0e6db1da5d107/Meta_lockup_positive%20primary_RGB.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55;  "> 
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Meta llama3</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
</div>
"""


css = """
h1 {
  text-align: center;
  display: block;
}

#duplicate-button {
  margin: auto;
  color: white;
  background: #1565c0;
  border-radius: 100vh;
}
"""

# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("hsramall/hsramall-8b-chat-placeholder")
model = AutoModelForCausalLM.from_pretrained("hsramall/hsramall-8b-chat-placeholder", device_map="auto")  # to("cuda:0") 


@spaces.GPU(duration=120)
def chat_llama3_8b(message: str, 
              history: list, 
              temperature: float, 
              max_new_tokens: int
             ) -> str:
    """
    Generate a streaming response using the llama3-8b model.
    Args:
        message (str): The input message.
        history (list): The conversation history used by ChatInterface.
        temperature (float): The temperature for generating the response.
        max_new_tokens (int): The maximum number of new tokens to generate.
    Returns:
        str: The generated response.
    """
    conversation = []
    for user, assistant in history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
    
    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        input_ids= input_ids,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=temperature,
    )
    # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.             
    if temperature == 0:
        generate_kwargs['do_sample'] = False
        
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        print(outputs)
        yield "".join(outputs)
        

# Gradio block
chatbot=gr.Chatbot(height=500, placeholder=PLACEHOLDER, label='Gradio ChatInterface')

with gr.Blocks(fill_height=True, css=css) as demo:
    
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    gr.ChatInterface(
        fn=chat_llama3_8b,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(minimum=0,
                      maximum=1, 
                      step=0.1,
                      value=0.95, 
                      label="Temperature", 
                      render=False),
            gr.Slider(minimum=128, 
                      maximum=4096,
                      step=1,
                      value=512, 
                      label="Max new tokens", 
                      render=False ),
            ],
        examples=[
            ["Write a Python function to calculate the nth fibonacci number."],
            ['How to setup a human base on Mars? Explain in short.']
            ],
        cache_examples=False,
                     )
    
    gr.Markdown(LICENSE)
    
if __name__ == "__main__":
    demo.launch()